
The 14th International Ship Stability Workshop (ISSW), 29th September- 1st October 2014, Kuala Lumpur, Malaysia 
 

© Marine Technology Centre, UTM                   187 
 

Design and Construction of Computer Experiments in 

Fluid Mechanics and Ship Stability 

Alexander Degtyarev*, Vasily Khramushin and Vladimir Mareev 
Dept. of Computer Modelling and Multiprocessor Systems, Faculty of Applied Mathematics and Control Processes, St.Petersburg 

State University, Russia 

 
Abstract: The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid 
dynamics. Tensor mathematics naturally embedded in the finite- operation in the construction of numerical schemes. As an 
elementary computing object large fluid particle which has a finite size, its own weight, internal displacement and deformation is 
considered. The proposed approach focuses on the use of explicit numerical schemes. The numerical solution of the problem is 
divided into several stages that are a combination of Lagrange and Euler methods. 
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1. Introduction 

In the paper mathematical basis for direct 
computational hydroaeromechanic experiment 
formation is considered. In contrast to the traditional 
approach of finite difference numerical schemes 
construction that are output from analytical models in 
the form of partial differential equations [1], the 
proposed techniques are focused on the construction 
and use of direct computational experiments. For these 
purposes fundamental laws of motion [2] are applied 
to large fluid particles [3], which have a finite size, 
their own weight, internal displacement and 
deformation [4, 5]. Each particle is represented in 
world (global) and local coordinate systems [6, 7]. It 
gives opportunity to examine them as free particles 
with strictly defined laws of neighbor interaction and 
with alternation of modeling stages of independent 
internal transformation processes [8, 9]. Such 
modeling is carried out in accordance with the basic 
conservation laws of energy, mass and fluid continuity 
[10, 11]. With this approach mathematical description 
of physical processes in aerohydrodynamics is greatly 
enhanced. It is the better than the traditional 
mathematical models based on differential calculus of 

infinitesimal elements [12], which basically do not 
allow direct control of internal state of measurable 
fluid volumes. At the same time the proposed 
approach differs from the well known smooth particle 
hydrodynamics (SPH) simulation [13-16], which is a 
purely Lagrangian method. For better numerical 
realization we combine Lagrangian and Eulear 
approaches at different stages. 

Strict and mutually reversible mathematical 
definition of properties and description of mechanics 
of finite fluid volumes transformations are possible 
using classical tools of tensor calculus. This 
instrument sufficiently specifies transformation of 
complex fluid flows through first-order spatial 
approximations. 

It is shown in the paper that with the proposed 
approach hydromechanics problems can be reduced to 
the use of explicit numerical schemes. At the same 
time tensor form of state control of three-dimensional 
computational objects and processes allows to tailor 
the solution to the real laws of motion or to the 
empirical and the asymptotic dependences. Apparatus 
of three-dimensional tensor mathematics in a natural 
way is embedded in the finite-difference operations of 
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large particles (final volume) method. This is done in 
a strict and an unambiguous representation of the 
physical laws in the nearest vicinity of an elementary 
particle continuum. In the paper carrying out of 
numerical experiments in a natural way comes down 
to three conditionally independent physical processes. 
This fact, combined with predominant use of explicit 
numerical schemes, enables natural parallel computing 
with the ability to dynamically select appropriate 
hydrodynamics laws. This choice is carried out 
depending on the characteristics of transformation and 
interaction of considered computational objects 
(particles). 

In practice, the constructions of direct 
computational experiments are usually obtained from 
close analogs of the numerical schemes from systems 
of partial differential equations. However, these 
analogs differ as short canonical result expressions in 
the final difference form [17]. For them, the results of 
the calculations are more appropriate for comparisons 
with physical or full scale experiments than for 
analytically accurate but simplistic solutions of 
classical mathematical physics. 

It should be noted that the above considerations are 
not new or unexpected. This work is focused on 
overcoming of two "eternal" questions in 
computational fluid mechanics: 
1. incomplete adequacy of the Navier-Stokes 

equations; 
2. problems arising in discretization of the equation. 

The essence of the first question is that the 
Navier-Stokes equation is not closed [19]. Therefore 
at the solution of these equations in different cases 
various closing ratios are put into practice [1, 22]. 
These ratios have character of conservation laws. 
Thus, the first problem of hydrodynamics is isolation 
of physical model of considered system from the 
actual situation. 

The problems arising at discretization of the model 
equations of hydrodynamics, are also quite serious. 

Firstly, equation change-type at its finite-difference 
representation is possible [22, 23]. Secondly, the 
hydrodynamic nature of the studied phenomena is far 
from concept of infinitesimals with which we work at 
consideration of any differential equations [12, 17]. In 
contrast to the problems of strength and elasticity of 
solid body, where deflections, shifts, turns may be 
considered in the finite-difference representation as 
smalls, shift of particles in continuous medium 
hydrodynamic problems even with a small impact 
may be finite. 

Thus, as a result we not only have fundamentally 
wrong equation as a model, but we often incorrectly 
numerically solve it. Therefore our task, in essence, 
consists in tearing off calculations from representation 
of model of physical system. For the solution of this 
problem methods of the direct computing experiment 
based on the modern computer architecture are 
developed in the paper. 

2. Numerical construction of continuous 
medium objects 

Direct numerical experiments in continuum 
mechanics using digital discrete computers are based 
on a limited set of numeric objects which interpolate 
parameters of the state of the physical fields in time. 
Computational processes with such numerical objects 
have to take place in accordance with physical laws in 
the mesh areas (including nonregularized ones). At the 
same time each mesh cell is represented as 
independent corpuscle actively interacting with the 
surrounding cell particles [12]. 

Let us call one mesh cell as elementary 
computational object (large particle of continuous 
medium of finite volume). All internal transformation 
of such particle within linear approximations is strictly 
and uniquely determined by the rules of tensor 
arithmetics. This is a convenient tool for geometric 
and kinematic description of a large particle. Apart 
from its position in space, classical tensor calculus 
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describes more complex transformation: rotation, 
compression, elastic deformation etc. Its functional 
apparatus is sufficient for development of strong 
forward and reverse mathematical description of 
physical processes of fluid mechanics in the finite 
mesh area. 

For description of large mobile elementary particles 
in a three-dimensional space we introduce two 
coordinate systems: absolute and mobile local 
(associated with the particle) (Fig. 1). 
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Fig. 1 – Local basis ri is formed by triad of basis vectors, ijk – 

unit vectors of global coordinate system (XYZ); R – radius 

vector of the moving system; A - radius vector of the point in 

global coordinate system; a - the same point in local 

coordinate system  

Let us initially restrict our consideration of distant 
mechanical interference. Then mechanical laws for 
local interaction set big external force interactions, 
intensive inertial reactions and sufficient internal 
deformations. All laws of fluid kinematics and 
mechanics of its transformation are represented as 
linear spatio-temporal dependencies in the simplest 
tensor-vector form. 

Let us distinguish the following notations of vector 
and tensor quantities for the convenience of 
representation of analytic expressions in their direct 
relationship with finite-difference representations and 
earlier restrictions [12]: 

A – value measured in a global coordinate system 
(may be scalar or vector only) 

a – value measured in a local basis, it refers to small 
volume or contiguous particles only (differential 
differences, can be scalar, vector or tensor) 

rR


, – values projected on global basis 
rR


,  – values projected on local basis  
∧
r  – local tensor in projections of global system 
∨
r – local tensor in projections of local system  
Detailed notation is in appendix 1. 
With this alphabet, capital letters for values in 

global coordinate system are used. Lower letters are 
used for small quantities at local bases projections in 
spatial location and current time. Basic mathematical 
operations are tensors products and products of 
tensors and vectors. They define the ratio of local 
reactions of the fluid particles to external influences of 
the environment. Formally possibility of rank 
increasing of tensor-vector objects is excluded. They 
have not immediate physical interpretation. 

Absolute or full velocity vector of a large particle is 
introduced as a shift of the center of mass in the global 
coordinate system: 

→→
−

→→→
∆

→
−=−==⋅ RRRRRtV TtTt 0          (1) 

Tensor of instantaneous velocities relative to the 
conditional center of large particle in projections on 
absolute coordinate system is assembled by direct 
geometric constructions. Obviously, such tensor 
contains components of rotation and speed of mutual 
deformation of the basis vectors for the adjacent dots 
in the fluid flow: 

iii
i VVV

→

Ω

→

+

→

∆

→∧
−=== ωω          (2) 

At the initial moment tensor internal flow velocities 
equal to zero. This is acceptable on the Euler stages of 
computational experiment. 

Kinematics of internal flows in elementary fluid 
particle is also algorithmically constructed as 
differential velocity tensor (Fig. 2). 

This is tensor of basis vectors form of large fluid 
particle moveable in time: 

→

Ω

→

+

→
∆
∆

→∧
−==⋅=⋅ i

o
i

t
ii rrrtvtv  [m3]        (3) 
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Fig. 2 – Tensor of local velocities is formed by deformation 

displacements of basis vectors of large fluid particle for 

rated time interval  

Tensor 
∧
v  sets current speed of the unit vectors in 

the local basis (lower case) with respect to the global 
coordinate system (subscripts). For traditional analysis 
it can be transferred to the local reference system 
(normalization of geometric measurements): 

∧∧∨∧>
=⋅= rvrvv /  [s-1]        (4) 

Here the known tensor of convective velocities is 
automatically formed. Traditional definition of an 
affinor is applicable to it and the theorem of 
Helmholtz [4] for decomposition on small increments 
in time is fair: expansion (divergence); turn (rotor) and 
deformation (shift). 

3. Definition of space operations over the 
elementary particles of fluid 

Computing objects are created at a stage of initial 
formation of hydrodynamic fields in the form of mesh 
area. The mesh area is supposed dynamically 
changeable and the irregular depending on current 
regimes in local areas and features of the problem. 
These objects are under construction immediately 
during computing experiment. Their appearance is the 
result of special logical procedures that control 
specific regimes of fluid flow and control progress of 
computational experiment on a functional level. A 
striking example of such procedure is the change of 
mesh area in zones of cavitation and vortex breaks and 

also on the free surfaces. Computing objects cannot be 
generated or destroyed as a result of mathematical 
manipulations (generation of vector dyads or tensors 
of the third rank are excluded by logic of creation of 
computing objects) [17]. 

Control of physical state of considered objects 
(large particles) allows to choose type of computing 
operations dynamically. For correct carrying out direct 
computing experiment it is necessary to set the 
following requirements to mathematical models: 
1. Elementary spatio-temporal objects and the basic 

physical phenomena must be described in the 
dimensional form; 

2. Physical properties of the environment and 
mechanics laws for the modelled phenomena are 
formulated in canonical form. Transition to 
demanded reference systems is carried out 
automatically at algorithmic level. 

3. Properties of arithmetic operations and elementary 
numerical objects are invariantly defined in global 
coordinate system and definitely correspond to 
calculated values in local bases. It is carried out by 
multiplication operations 
Taking into account the history of the movement, 

"not free" fluid particle is governed by vector analog 
of the Newton law [5] (fig.3) 
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reaction 
→
W . ×  icon above the letters in fig.3 means 

that it can be both ∧  and ∨ . Value and direction of 
→
W  depend both on internal state (inertia) of this 
particle, and on its ability to be deformed, to absorb or 
to strengthen external manifestations of motion 
energy. Linking mass tensor with the fluid particles 

∨∧>
⋅= ρrM  we obtain the definition of density or 

internal energy, which imparts fluid environment 
anisotropic properties: 

→∨∧→→
⋅⋅=⋅⋅= WrWrF jk

ki ρρ ,        (6) 

where 
∧
r  [m3] is tensor of large fluid particle form; 

∨
ρ  [kg/m3] is density tensor characterizing the 
internal state of a fluid particle, taking into account the 
dynamic interaction with the continuous medium. 

Small spatial movements historically are 
determined by the calculus of fluxions underlying 
Newtonian mechanics. In kinematic problem fluxions 
determine the speed forming difference differential 
(by Newton – the moment) in a product with 
calculated step in time. 

Within such views large particle kinematics is given 
by differential (moment) of velocities in the absolute 
coordinate system subject to small displacements in 
the local basis: 

→→→→
+ +⋅+= ZtVRA ,           (7) 

where t is calculated time moment; 
←
a  is 

coordinates of the control point (see fig.1) in local 
reference system; 

→
R  is location of the local basis in 

the absolute coordinate system; 
→
V  is speed of 

forward shift of local basis (of large fluid particle); 
→
Z  

may be in different form in dependence of mode of 
current. In simplest case )( tvraZ ⋅+⋅=

∧∧←→
. Then we 

represent (7) as tvaVAA ⋅⋅++=
∧←→→→

+ )(0  or in the form of 
system of scalar equations [6]: 
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In case of vortex flow in accordance with 
Cauchy-Helmholtz theorem [4] 

ttvrtvratVRA ⋅⋅+⋅+⋅+⋅+⋅+=
∧∧←∧∧←→→→

+ )()( ω . Here 
→

+ A  and 
→
A0  are new and initial location of control point in 

global system; 
∧
r  is tensor of large fluid particle 

form; 
∧
v  is tensor of speeds of local motions of basic 

axes of the tensor defining deformation of a large fluid 
particle; 

←
ω  is speed of internal shift. 

Let us present equation for motion of arbitrary point 
(7) near large fluid particle in convenient dynamic 
form. Here we take into account deformation and 
energy of internal forces: 

>
m  [kg-1]. We have to 

consider multiple nature of such forces: external 
distributed 

∧
f [N m2, kg m3/s2] and mass 

→
F [N, kg 

m/s2]: 
←∧>∧∧→>→→→

+ ⋅⋅⋅+⋅++⋅⋅+⋅+= atfmtvrtFmtVRA )2/(2/ 22 , (8) 
The resulting expression contains the traditional 

system of Euler differential equations and an 
additional term describing the deformation of a large 
fluid particle under the influence of stress on its 
borders. 

4. Algorithmic realization of hydrodynamic 
laws 

The Algorithmic implementation is based on 
computational schemes of mixed Lagrangian and 
Eulerian approaches [4,5]. This is expressed similar to 
the methods of "large particles" [3] and "final volume" 
[18] in the double integration of first order motion 
equations. Thus the time cycle of computing 
experiment is divided into three conditional stages: 

1 stage – Kinematic parameters are calculated for 
the centers of large fluid particles. For this purpose, 
the current source data into fixed nodes of Eulerian 
coordinates are used; 

2 stage – Lagrangian or large deformable fluid 
particles are involved in free motion. They redistribute 
the internal properties of the original Euler cells to 
adjacent space; 

3 stage – Laws of conservation of mass and energy 
are consistent. This is achieved by deformation of 
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shifted fluid particles. The next step makes 
reinterpolation of characteristics of current in initial 
nodes of the fixed Euler computational mesh. 

Computational experiment is generally presented as 
a process of integral transformation of the velocity 
field in absolute time: 

tWVV ⋅+=
→→→

+ ,               (9) 
Thus the construction of computational experiment 

is reduced to difference derivation of the first order. 
This is the main feature of the Lagrangian-Eulerian 
approach for the numerical solution of problems in 
fluid mechanics. In other words, it is possible to call 
this approach a method of splitting of the decision on 
physical processes, which can be formed by three 
conditional stages of the numerical solution of applied 
problem: 

1 stage. Basing on the current velocity field the 
condition of large fluid particles on the following 
instant is specified: 

)( tvrM ⋅+⋅=
∧∧∨<

+ ρ ,            (10) 

where 
∧
v  is tensor of map of the current velocity 

field on local basis of a large particle; 
∨
ρ  is tensor of 

internal state of a fluid particle at the current time 
moment. 

2 stage. After specification of resultant vector of all 
external forces influencing a large fluid particle, 
calculation of new velocity field is carried out: 

tFMVV ⋅⋅+=
→

−
<→→

+ 1
,            (11) 

3 stage. As a result of the first two phases spatial 
displacement of large fluid particles takes place. New 
hydrodynamic fields partly no longer satisfy the 
conditions of continuity and isotropic of source 
environment. Depending on task the type of problem, 
at the final stage it is necessary to make relaxational 
amendments to absolute properties and interaction 
conditions between fluid particles. It is necessary to 
carry out walkthrough control of quality of the 
solution. We must, if necessary, apply scheme of 
adaptation or empirical substitution of solution in 

areas where the computational model gives a clearly 
incorrect results. 

It is known that traditional approach to numerical 
solution fluid dynamics problems is most often 
reduced to application of implicit schemes [1, 10]. The 
described algorithmic approach, first of all because of 
the proposed splitting of the solution on physical 
processes, gives the chance of application explicit 
numerical schemes at the first two stages. In this case 
it is possible to increase essentially effectiveness of 
computing procedures through: 
1. Natural parallelization of the computation process; 
2. Possibilities of adaptive correction of mesh area 

depending on features of the problem; 
3. Dynamic reconstruction of solution in accordance 

with fluid currents transformations in time. 

5. Construction of explicit numerical 
schemes and features of computational 
operations 

Let us construct numerical procedure basing on the 
made assumptions. It is necessary to note that 
proposed approach (first of all endows the elementary 
deformable particle with internal energy) expands 
possibilities of mathematical representation of 
fundamental mechanics laws. 
1. Vector analog of Newton law for deformable 

particle – equation (6). 
2. Viscous stress tensor for Newtonian fluids: 

ΛηΛη //
>

⋅
>

=
∨

⋅
∧

=
>

HHH vvf ,  [N/m]  (12) 
3. Elastic stress tensor for a solid (Hooke law): 

ΛΛ /)(/)(
>

⋅⋅+=⋅⋅+=
>

ΓΓΓ

>×∨∧∧
cv1cvrf tt ,[N/m](13) 

where tensor of local velocities is constructed as 

iViVv o
→→

+ −=
∧

 (fig.2); general rheological constants are 
formally constructed in tensor form, they satisfy the 
expressions of the type 

<
M = M 

i
k =

∧∨
⋅ rρ =  ρ ij·rjk – 

tensor of inertia in projection on global reference 
system; 

∧
r ,

∨
ρ – geometric tensor of form [m3] and 

fluid density [kg/m3] and energy accumulation inside 
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the particle; 
>>
c,η  – tensors of dynamic viscosity 

[kg/s] and rigidity [kg] of real fluid; Λ – conditional 
distance that defines distance of upstream direction of 
adjacent particles. 

5.1 Properties of computational operations 

For correct construction of numerical schemes it is 
necessary to define properties of computational 
operation basing on proposed approach. All operations 
are carried out exclusively in the dimensional form. It 
is necessary to provide automatic control of the 
physical correctness of the simulated processes. If 
necessary hybrid schemes in subareas where there is a 
change of modes of the currents demanding 
well-timed substitution of used laws of mechanics and 
their mathematical models are applied. Three groups 
of operations contact computing objects: 
1. Logical and empirical operations. There are 

physical laws like “if we have tensor of convective 
velocities 

>
v  then it generates tensor of stress 

∨
f  

in accordance with law (12)”, etc. Such operations 
set a way of formation and methods of analysis of 
tensor objects, and also a decision making about 
change of mathematical models during 
calculations. 

2. Addition operations are applied only to values with 
identical physical dimensions. Thus the condition 
of their definition and construction in the same 
basis has to be satisfied. Addition can be applied to 
the complex objects also in conditions when 
operations of automatic coordination of reference 
systems and physical dimensions are defined. 

3. The operation "multiplication" is applicable only 
to objects whose connected components lie in dual 
systems of references. Increase of rank of tensor in 
multiplication operations is forbidden. For creation 
of vector or tensor objects special algorithms 
basing on a physical problem definition have to be 
defined. 

Computational objects are given by the following 
characteristics: 
1. Scalar and invariant values (time for example) take 

part just only in multiplication operations with any 
objects; 

2. Vector values take part in addition operations with 
comparable vectors, they can take part in 
operations with tensors if it necessary for transition 
from one reference system to another. Application 
of multiplication of vectors for creation of dyads is 
inadmissible; 

3. Tensor values define physical properties of 
elementary fluid particles, their geometrical 
deformations, kinematic properties and other 
dynamic processes in a continuous medium. 
Tensors take part both in addition operations with 
comparable tensors, and in multiplication 
operations with associated (dual) vector or scalar 
objects. 

5.2 Construction of explicit numerical schemes  

As input for construction of computer simulations 
in fluid mechanics the following dimensional fields in 
global reference system will be defined: }{→

R  [m] – 
the field of mesh coordinates points; }{→

V  [m/s] – the 
speed field; }{

<
M  [kg] – the tensor field of internal 

properties for each of the fluid particles. 
In thus defined mesh area local computing objects 

are introduced. Let us repeat physical parameters of 
fluid described elementary fluid particles: 

∧
r  [m3] – 

tensor of large particle form; 
∧
v  [m3/s] – tensor of 

local velocities of basis axes deformation of the 
particle; 

∧
f  [N m2] – stress tensor at its boundaries. 

In this case computer simulation could be divided 
into three stages (in language of tensor mathematics 
[12]): 

Stage 1. KINEMATICS. 
New field of nodal points: 









⋅⋅⋅+=
<→→→→

++ 2/2tt MFVRR      (14) 
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The field of convective speeds is formed by 
algorithmic creation of the tensor: 







∧

v  = 










 →

−
→

+ iVoiV      (15) 

Estimated status of the new field of internal 
properties: 













⋅⋅+=










 +=







+ ∨∧∧∨∧>

ρρ )( trr vM  







+ ∨

ρ  = 








⋅+⋅
>×∨

)v( 1 tρ      (16) 

Thus calculations of the distributed current 
characteristics are carried out on the fixed Euler mesh. 

Stage 2. DYNAMICS. 
The basis of this stage is satisfaction of physical 

conservation laws. Here comparison of fluid rheology 
with current state of computing model is carried out. 
E.g. let the momentum conservation law is defined 

)VV(MVM Δ→→→
+⋅=⋅+ >>

. In this case basing (16) we 
have 

tVvVM)MM(V ⋅⋅=⋅⋅−+=
→→→∆ ><>>

     (17) 
and vector Newton equation (6) in Euler form that 

true for large fluid particle on fixed nodes of 
calculated area: 

→→→
⋅⋅⋅=⋅⋅=

>∨∧>>
VvVvMF r ρ  

The resulting expression contains fluid stressed 
state, which can be explained by the rheological 
properties of a computational model of the flow: 







∧

f  = 










 →

−
→

+ iFoiF  or 
∧>>∧>∨∧∧

⋅⋅=⋅⋅⋅= vvMvvrf ρ  

In a form of the new equation corresponds to record 
of stresses in the Navier-Stokes equations. Rheology 
of a real fluid is made in the form of laws (12), (13) 
associated with the tensor of convective velocities 

>
v . 

Accounting of other conservation law restores loss 
of volume component of acceleration in the 

expression (17). It leads us to consideration of particle 
motion with variable mass without deformation. 

M = det( 
>
M ),  ρ = det(

∨
ρ ),       

)1(1 −⋅=−⋅= ++
→→→∆

ρ

ρV)
M

M(VV .  (18) 

This model takes possibility to consider different 
stress modes. If we extract diagonal tensor 0

>
v  in 

such a way that trace of residue *
>
v  is equal to zero: 

)0( ** =+=
>>>>
vtrvvv 0  

than we obtain tensor of spherical compression: 

    
tvf ⋅⋅=

>∨∨
00 ε           (19) 

Selection of skew-symmetric part of a tensor gives 
viscous stress tensor: 

   
2/)*( Tv*vvf HH

>>∨>∨∨
−⋅=⋅= µµ    (20) 

The remaining symmetric tensor is associated with 
elastic deformation: 

   
2/)*( tt Tv*vcvсf ГГ ⋅+⋅=⋅⋅=

>>∨>∨∨
 (21) 

Full tensor of internal stress: 

НГ vvсvf t >∨>∨>∨∨
⋅⋅⋅⋅= ++ µε 2)( /0    (22) 

Dynamic coefficients 
∨∨∨
εµ ,, с  differ from 

kinematic coefficient by scalar density ρ., Particle has 
increment of internal movement velocity under the 
influence of the stress tensor: 

ρ
tfv

∨∨
=∆              (23) 

If flow is stable then tensor of speeds increment 
∨

∆ v  has to compensate tensor of convective speeds 
for a calculated time interval: 

0=⋅+⋅
∨∨∨∧

∆ vrrv  

At this stage of the calculations, this expression is 
accurate, because it does not take into account the 
displacement of large particles in a time t. 

Stage 3. STATIC. 
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At the final stage it is necessary to recover velocity 
field in accordance with increments calculated at the 
second stage. Here deformation movements around 
static centers of particles are considered. So during 
Lagrangian steps centers of gravity of large particles 
are shifted. We have to carry out interpolation of flow 
characteristics from these centers to initial nodes of 
computational area (Euler approach). At this stage it is 
possible to consider conditions on free boundaries. 
Here we use extrapolation with the help of centers of 
transborder fluid particles instead of interpolation in 
breaking nodes of nonregularized mesh. 

For these purposes it is necessary to turn to mixed 
tensor from tensor 

∨
∆ v  defined in local basis. Mixed 

tensor is based on global reference system: 
∧∨<

⋅=∆∆ rvv              (24) 
For transition to initial mesh the new local basis on 

the fixed knot is constructed. Spatial points shifted in 
time are used as adjacent nodes: 

ii RR o
or
→→

+
+ −=+∧

             (25) 

Expanding expression (15) used in the construction 
of the tensor of local speeds on new basis vectors, we 
obtain algorithm for new velocity field calculation: 

∑
←

∆
→→

⋅+=+ ∧
i ivVV r              (26) 

Expressions (23) - (26) reveal the basic algorithmic 
constructions allowing to apply inverse Newton's laws 

<→→
⋅= MFW . 

6. Conclusions 

In the paper approach for constructing procedures 
for direct numerical experiment in problems of 
hydrodynamics is described. Distinctive feature of the 
proposed approach is a successful combination of 
well-known computing technologies (such as the 
"method of large particles" [3, 11]) and algorithms of 
tensor mathematics [8, 12]. We use dualism of 
corpuscular and continual representation of 
continuous medium (approaches of Euler and 

Lagrange). Introduction of a large particle with many 
degrees of freedom (movements, rotations, 
compression, stretching, etc.) makes it possible to 
consider the final transformation of computing object. 
This is very important, especially in problems of 
hydrodynamics, where even small effects can lead to 
significant displacement. The proposed approach 
makes it possible to exclude from consideration the 
mathematical models of fluid mechanics in the form 
of differential equations in partial derivatives. 
Construction on their basis of finite-difference 
computational schemes makes proceed from the 
consideration of infinitely small quantities (when 
considering the approximation of derivatives in the 
equations). In the proposed approach, computational 
experiment is carried out on the basis of fundamental 
conservation laws. 

The dualism of corpuscular and continual models of 
continuous medium allowed to present computing 
procedure in the form of three serial stages combining 
approaches of Euler and Lagrange. Such division is 
aimed at providing efficient computing procedure 
especially in the conditions of the multiprocessor 
computer environment. As the basis of computational 
efficiency the use of explicit numerical schemes can 
be considered. This makes the internal state through 
control of the corpuscular-continuous computing 
environment possible. In this case application of 
hybrid or empirical solutions in subareas, where there 
is a violation of conditions of smoothness or stability 
of numerical schemes, is possible. 

The apparatus of tensor mathematics is developed 
for construction of direct computing experiments on 
the basis of explicit numerical schemes. It fully 
describes physical processes in the continuous 
environment by means of the linear interpolation 
relations. 

Experience in the application of this approach 
allows to judge the viability of historical ideas of Isaac 
Newton about corpuscular and continual construction 
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of laws of a mechanics of continua by means of finite 
differences – calculations of fluxions in 
three-dimensional space. 
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Appendix 

Let us introduce geometrical notations adopted in 
this work [12]. 
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Local tensor in the absolute frame of reference is 
written as a string of three basis vectors or 
three-column coordinate matrix: 
















=







==

→→→→∧

3,32,31,3

3,22,21,2

3,12,11,1

321

rrr
rrr
rrr

rrrrr i  (index at a 

vector on the right) 
Projections of simple basis vectors of global 

coordinate system in local basis are represented 
uniquely in the form of dual basis 1−

∧←∨
== rrr j  (or 

inverse matrix) 

1

3,33,23,1

2,32,22,1

1,31,21,1

3

2

1

−

←

←

←

← ∧
=

















=

























==
∨

r
rrr
rrr
rrr

r

r

r

rr j  (index at a 

vector on the right) 

iAaRA =+=
→→→

- the big vector with covariant 
components where the capital letter A means that a 
vector is constructed, measured relatively common 
center Ω and scaled in a uniform global coordinate 
system. If arrow is to the right → or subscript 
designate than vector components are projected on 
coordinate axes of global reference system. If arrow is 
to the left or vector index is at the top (superscript) 

jAA Ω

←

Ω =  then vector components are contravariant. 
They are projected in the dual system of local 
coordinates 

∨
r  inside large fluid particle. The 

one-to-one association between dual bases is defined 
by multiplication operation with tensor of form of 
concrete 

∧
r  fundamental particle: 

←

Ω

∧→
⋅= RrR  or 

∨→∧→←

Ω ⋅== rRrRR / . 
The left-hand indexes unless otherwise stated can 

be used for a space binding of computing object and 
for its mark in current time: 

→

Ω RT  are coordinates of knot point. Ω defines 
location of node in mesh of computational domain; T 

is time from the beginning of the computational 
experiment. 

→

+ Rt  is reference to adjacent point (relative to the 
direction '+' starting from the center of mass of the 
large fluid particle Ω offset in time by an amount t).  

iAA =
→

 – space point (vector) marked in global 
coordinate system [m]; 

kaa =
←

 – vector counting in the local basis of an 
elementary fluid particle [m-2]; 

ikk rrr ==
→∧

 – tensor of form of large fluid particle 
[m3]; 

jkj ρρρ ==
←∨

 – tensor of density [kg·m-3]; 
∧∨<

⋅== rMM j
i ρ  – mixed tensor which relates the 

internal state of the particle at global reference system 
[kg]; 

In this case it is possible to present brief table of 
general notations 
T   – absolute time counting;  t = ∆T  – 
calculated time interval 

c 

p – pointwise (scalar) pressure N/m2 

Ω
TR – coordinates of knot of mesh area Ω at 

time moment T 
m 

+
+R – coordinates of adjacent point at the next 

time moment 
m 

V – full speed of fluid particle in global 
reference system 

m/s 

v – velocity vector relatively moving center of 
fluid particle 

m/s 

w – vector of velocity increment (acceleration) 
for fluid particles 

m/s2 

r = rk = rik – geometric tensor of form large 
fluid particle 

m3 

v =∆
∆ri  – tensor of local velocities (velocities 

increment) 
m3/s 

v =  v r =v /r   – tensor of convective 
velocities 

1/s 

ω  =  ∆V 
i  – tensor of flows inside large fluid 

particle 
m3/s 

 
ρ =ρ j = ρ kj – tensor of density or internal state 
of fluid particle 

kg/m3 
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M= ρ · r =Mi
j – tensor mass of fluid particle 

(mixed tensor resulting internal state of fluid to 
global frame of reference 

kg 

F – resultant vector of mass (volume) forces N 
f  – tensor of stresses at the boundaries of 
fluid particle 

N m2 

f = f · r – stress inside and in a vicinity of fluid 
particle 

N/m 

fН=η ·vН / Λ − conditional tensor of viscous 
stresses 

 

fГ=c ·vГ ·t / Λ − conditional tensor of elastic 
stresses 

 

 


