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Abstract: Inextreme nonlinear seas, one cannot directly use the measured spectra, St (@), from these seas in an analysis,
or to derive a seakeeping prediction, but rather one must derive the underlying linear spectrum to describe the waves
that should be simulated. At extreme wave heights theoretical spectra have nonlinear tails that are unrealizable in an
experimental facility due to the breaking of high frequency waves. A technique for deriving the underlying realizable

spectrum is described.
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1 Introduction

In extreme nonlinear seas, one cannot directly use the
measured spectra, S7(®), from these seas in an anal-
ysis, or to derive a seakeeping prediction, but rather
one must derive the underlying linear spectrum to
describe the waves that should be simulated. This
is because nonlinear interactions between the linear
waves will provide second-order, nonlinear contribu-
tions through the physics capturing wave-wave inter-
actions.

Atextreme wave heights theoretical spectra such
as the Joint North Sea Wave Observation Project
(JONSWAP) spectrum have nonlinear tails that are
unrealizable in an experimental facility due to the
breaking of high frequency waves. The underlying re-
alizable spectrum may be derived as the correspond-
ing linear spectrum by the tech- niques to be de-
scribed.

The derivation of the linear spectrum underlying
the nonlinear spectrum requires the solution of an in-
tegral equation describing the measured spectrum by
either direct or indirect methods. This section will
introduce two possible methods of solving this prob-
lem, with the assumption that the process involves
only first- and second-order processes, a reasonable
assumption in most circumstances.

2 Determining the Linear Spectrum

Wave processes are assumed to be homogeneous, sta-
tionary, and ergodic. This allows us to derive all sta-
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tistical properties of the wave height and the power
spectrum by examining wave records at just one po-
sition, which is taken as x = 0.

Only the case of unidirectional waves is consid-
ered here since an integral equation similar to the one
that exists for unidirectional waves is not known for
the case of multidirectional waves. A two-sided target
spectrum Sp(®) is assumed to have been provided by
the user. A two-sided linear spectrum S (®) is sought
which approximately satisfies the equation

So(@) = S.(o)
+2/dO’SL(O')SL(CO—O')ZZ(O':CO—O') M

—oo

for real @ where

(6’ +0%)/(2g) ifwc>0

Z(c.m)= —|o? — 0?|/(2g)

ifoc <0’
The details of the derivation are presented in
Sclavounos (1992). The spectral density Sy (®) is that
of the linear model and is defined as follows:

1, 5
Therefore, the statistical inference of the second-
order model reduces to the determination of the wave
amplitudes a; so that the second-order spectral den-
sity best matches the measured spectrum Sg(@). The
linear spectral density S;(®@) may be selected from
any of the standard families with parameters such that
the equality (1) is satisfied in a least squares sense.
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For example, the ITTC spectrum may be used
for the representation’ of Sz (@):

0.110 5 _0a44ni-4
SL(C{J) = —47.',' H]%HTIA 56’ 0.4404 5
T; (3)
L=
2n

In (3) an accurate estimate of the modal period 77 may
be available from full-scale measurements. The sig-
nificant wave height on the other hand must be se-
lected so that (1) is satisfied as accurately as possi-
ble, given Sg(®). The amplitudes of the regular wave
components then follow from (2).

A numerical approach such as the following
might be considered. Using this definition of Z and
assuming that the spectra Sy (@) and Sp(®) are even
functions of @, the integral equation can be rewritten
as

So(®) = SL(co)+2/d0'SL(0')
0

x [Si(®+0)Z*(—0,0+0)
+S1(0 —0)Z* (0,0 —0)].

The integral equation has no solution if the target
spectrum has content of higher than second order
in the wave amplitude. This section describes how
a least-squares approximation to the desired linear
spectrum Sz (@) may be obtained and thus avoids the
issue of whether a solution exists or not.

The numerical scheme that follows requires that
discrete frequencies be equally spaced. If this is not
the case, then @ — & in the discretized integral equa-
tion will not be one of the discrete frequencies @; and
any numerical scheme becomes complicated. The
discrete frequencies in this section are therefore not
necessarily those for which linear wave amplitudes a;
are chosen in the next section, and the N used in the
description of the numerical scheme is not necessar-
ily the number of positive wave frequencies used in
the next section.

To discretize this equation, it is assumed that
S(w) can be ignored for |®w| > Q. Then N and Aw
are chosen so that NAw = Q. Define the following

I'This representation can be obtained from equations on page
38 of Beck et al. (1989) if three significant digits are retained.
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quantities for j = —-N,—-N+1,...,N:

@; — JA®
C; = JA®
S; = S(jAw)

We need to define Sy, ; over the wider range of j values
between —2N and 2N:

St.j = Si(jAw)

although it has been assumed that the target spectrum
St () is negligible for values of j greater than N in
absolute value. (The linear part of it in Sz (@) should
be even more negligible.) The range ol integration
is truncated and trapezoidal quadrature is used to ap-
proximate the integral equation as follows:

So(®) = SL(w)
Q

42 f do S.(0)SL(0—0)|Z(c.0 —o)[*
‘o

= SL(CO) 4+ 2A0 {%SL(O'_N)SL(CO — O'_N)

2
® |Z(67N1m_6ﬂ'\")‘

N1
+ ) S(on)Se(®— o)

n=—N+1

< 12(G1 0 — )
1
4+ ;SL(O'N)SL(GJ — O'N)

x |Z(oy .0 — aN)z}

1
Sor=SL¢+2A0 {;SL._—NSL.HN

x |Z(—NAw, (+N)Aw)|?

N—1
+ Y SeaSee-nl|Z(nAe, (€ —n)Aw)|?
n=—N+1

1 9
—|—;SL_NSL__4?_N |Z(NACO, (f —N)ACO)|“}

Here Ac = Aw. Taking account of where the target

spectrum and its linear part are neglibigle, we have

the following approximation of the integral equation:
N

So.0 = SLe+2A0 E SL__nSL.f—nZg,ffn
n=—N

(4
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where Z, ,_, = Z(nAw, ({ —n)A®).

A small error has been introduced at the two end
points. When |£ —n| > N, we can either ignore S,_, or
set it equal to Sp. The latter alternative is preferable.
In view of the definition of the function Z and the
evenness of Sy, (4) can be written as

Spe+2A0 i SEaSLie—nZps—n f€>0
n=1
S0~ Spe+2A0 _Zl, SLaSL,—|e—n|
' py e ife<0
x Zg__,p,”
(4"

where the case £ = 0 has been ignored since spectra
are assumed to vanish as the frequency approaches
7ero.

Here S; , = Sp(pAw) and Sp , = Sp(pAw). The
series is truncated and the equations are written as

fe=Src—Soy
i—1
+2A0 | Y SLaSLt-nZn i
n=1
N
+ Z SL,HSL,nferzz.f—n
n=~F+1

n=1

N—¢
+ Z SL.HSL,n+fZ2n,f+n‘| =0

for £ =1,2,...,N. The frequency A® and the num-
ber N are pm\’lded by the user. The objective is to
minimize the sum

<o
=Y fi
=1
An initial guess S ( ) for the discrete linear spectrum
is provided by the equatlon
S\ =Sy forf=0,1,...,N.

All iterates for the linear spectrum are assumed to
vanish at @ = O rad/sec:

S =0 forp=0,1,.

It is now assumed that the p-th iterate, say Sféa is

1) .
known. Form=1,2,... N, Sg); ) is chosen between

© Marine Technology Centre, UTM

(1— )S and (14 o) S LPJL such that
1 1 1
fo ( et )r'“’Sf(fr:r_—)l?SE: jr
() (p)
S.{fm+l-""’SL?N) :

is approximately minimized. The number ¢ is some-
what arbitrary and can be provided by the user; it
only serves to bound the interval in which a mini-
mum of ¥?2 is sought. Numerical tests for some spec-
tra indicate that & = 0.1 is acceptable for those spec-
tra. To minimize ¥2, we can check the sum at sev-
eral, say 10, evenly spaced points S[p+ ) in the inter-
val [(1 — ) Sf,l, (1 +(x)5(p)] and make the change
based on the 10 evaluations of y2. The number 10 is
arbitrary and can be replaced by another value sup-
plied by the user. Furthermore, the points do not have
to be evenly spaced. The whole process is repeated
for a specified number of iterations. The sum 2 can
be monitored and the iterative process can be trun-
cated when the fractional change in the sum is less
than a user-specified tolerance or no longer decreases.

The desired values Sp ¢ for the discrete linear

spectrum are given by S p;( where p is the number
of the most recent iterate. Interpolation is required if
the spectral density function is desired at frequencies
other than w,, = mA®.

3 The Algorithm

The scheme proceeds as follows:

1. Choose the highest frequency € to be used in the
discretization and a sufficiently large value of V.
This defines Aw = Q/N.

- — 0
2. Define the initial guess S_,Eg as the target spec-

trum: Siog = St.s. Also define S{ ){ so that S[Q}{ =
S(LDB Except for the zeroth iterate, the discrete

function Sg’? is the right side of eq. (4) when

St ¢ 1s replaced by the m-th iterate ngc) for linear

part of the target spectrum.

3. This is the start of a loop. Calculate a new guess
S(Lm() for the linear part of the target spectrum
from the equation

S[_m—])

— D (3
')D H’!f])
107 +S4

Sy =St
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4. Calculate the RMS difference between SL"? and

SH}*”. If it is sufficiently small or there have

been too many iterations, exit the loop.
5. Calculate the right side Sg? of eq. (4) corre-

sponding to SET’.}.

6. Go back to the beginning of the loop.

4 Numerical Test

The scheme was tested on the Bretschneider spec-
trum. Two tests were conducted, in the first, a
quadratic target spectrum was constructed from the
Bretschneider spectrum and the Bretschneider spec-
trum was extracted from this target spectrum. In the
second test, the Bretschneider spectrum was treated
and the target quadratic spectrum and the linear part
of the Bretschneider was determined. In both cases,
the Bretschneider spectrum was given by:

S(w) =A/wde B/,

where A = 173H} 5 /T . B=691 /T Ty =0.773 T,
T,y =2m/0.45sec and Hy ;3 = 14.7m.

In these computations, the loop was not termi-
nated for any value of the RMS difference between
iterates. Instead, the loop was allowed to execute 30
times. The parameter Q was set to 10 rad/sec and the
number of subintervals into which the interval [0, €]
was subdivided was set to 1023 so that N = 1024.

For the first test case, where a target quadratic
spectrum was constructed from a Bretschneider spec-
trum, Fig. 1 compares the initial iterate (the target

spectrum S7 = S) with the 10th, 20th, and 30th it-

)

erates for SE” . Figure 2 depicts the nonlinear part

Sr— SE”} of the computed total spectrum at the mth it-
erate for for m = 10,20, 30 and the target Bretschnei-
der spectrum.

For the second test case, where the Bretschnei-
der spectrum is considered to be the target spectrum,
Fig. 3 compares the initial iterate (the target spectrum
St = S,ED)) with the 10th, 20th, and 30th iterates for
SE"). Figure 4 plots the computed linear spectrum

SE”) and the computed total spectrum S(Qm} at iteration
m = 30. Figure 5 is a log plot of the RMS difference
between successive iterates Sim) for the linear part of
the target spectrum. Even though successive approx-

)

. . (m .
imations 5; " appear to converge, Figs. 3 and 4 show
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Bretschneider Spectrum and Iterates for the Linear Part: N = 1024
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Fig. 1  The target spectrum and iterates for the lin-

ear part of the target spectrum. Spectral definition:
S(w) =A/w’e B/ A =173H2,, )T} B=691/T},
T1 =0.773Ty, T, =21 /0.45 sec and H1/3 = 14.7m.

Bretschneider Spectrum and the Computed Monlinear Part: N = 1024
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Monlinear Part: 10th Iterate
| Nonlinear Part: 20th [terate
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Fig. 2 The nonlinear part of the target spec-
trum calculated as the difference between the tar-
get Bretschneider spectrum and iterates for the lin-
ear part of the target spectrum. Spectral definition:
S(w) =A/@%e B/® A =173H2,, )T}, B=691/T},
1 =0773T,, T, =21/0.45 secfancl H1/3 = 14.7m.
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that the result for the linear part of the Bretschneider
spectrum is not the limit of the successive approxima-

tions SIE”;):

. (m) _
Jim S 2 51

The computed nonlinear spectrum is larger than the
target Bretschneider spectrum in finite intervals, a
phenomena which probably also occurs at higher fre-
quencies. As an example, near the frequency w ~ 7.5
rad/sec in Figs. 3 and 4, it is clear that the computed
nonlinear spectrum is larger than the target spectrum
and that the linear part of it is identically zero (within
a small tolerance). In this method a local change in
the linear spectrum does not affect the computed non-
linear spectrum in the neighborhood of the change as
much as at other frequencies due to the nonlinear na-
ture of the integrand in the integral equation. In any
case, the linear spectrum cannot be reduced below its
current value near @ = 7.5 rad/sec so that a benefi-
cial local change in the linear spectrum is precluded.
Thus, it is impossible to improve the solution when
the next iterate is computed from (5).

Computed Linear and Total Spectra at lteration 30: N = 1024
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Fig. 4 Comparison of the total computed nonlinear
spectrum with the linear part of the total computed
nonlinear spectrum. Spectral definition: S(w)
A/a)se_ge"r‘““. A= 173H]2,3/T4, B=691/T{ Ty =

0.773 T, T,y — 2%/045 sec and Hl 3= 14.7 m.
Computed Total Spectrum: N = 1024
1 T T T T T T e ecram,
T o rerare
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Fig. 3  The total computed nonlinear spectrum ob- eooon - - = - e
tained while iterating for for the linear part of the fseration
Bretschneider spectrum. Spectral definition: S(w) =
-Bfo* , _ 2 4 p_c 4 —
Alw e .A_l73H1f,3/T],B_691/T1. = o
0.773 T, Tn =21 /0.45sec and H| 3 = 14.7 m. Fig. 5

5 Conclusions

In extreme nonlinear seas, one cannot directly use the
measured spectra, St(®), from these seas in an anal-
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Logig plot of the RMS difference between
successive iterates for the linear part of the target
Bretschneider spectrum. Spectral definition: S(®)
AJ@’e B/ A = 17T3H?,, /T, B=691/T}, Ti
0.773 Ty, Tiy =21 /0.45 sec and Hlf,q = 14.7m.
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ysis, or to derive a seakeeping prediction, but rather
one must derive the underlying linear spectrum to de-
scribe the waves that should be simulated. A tech-
nique for deriving the underlying realizable spectrum
has been described.

Using the technique presented for deriving the
linear spectrum from the quadratic spectrum via the
solution of an integral equation, even though succes-
sive approximations SE”) appear to converge, the re-
sult for the linear part of the spectrum is not the limit
of the successive approximations. It is clear that in
some intervals, the computed nonlinear spectrum is
larger than the target spectrum and that the linear part
of it is identically zero (within a small tolerance).
In this method a local change in the linear spectrum
does not affect the computed nonlinear spectrum in
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the neighborhood of the change as much as at several
other frequencies due to the nonlinear nature of the
integrand in the integral equation.
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