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the future.  The computation time per loading 
condition per forward speed was 750 h processor 
time for the full long-term assessment using 
extrapolation of failure rate over wave height.  
When design sea states assessment was used, the 
entire computational time was 68 h per loading 
condition per forward speed.  Note that the 
reduction of the computational time of the design 
sea states method compared to the full assessment 
was only 750/68 ≈ 11 times, from which 19/3 ≈ 6 
times due to the reduced number of wave 
directions; thus, the reduction of computing time 
due to the reduced number of wave heights (1 in the 
design sea states method vs. 16 in the full 
assessment) was only 1.7 times. 

Extrapolation of stability failure rate over wave 
height in a probabilistic direct stability assessment 
can be applied to provide accurate or at least 
conservative results in acceptable computational 
time.  The advantage of this approach is that the 
results of direct stability assessment can be directly 
used as operational guidance.  On the other hand, 
design sea states approach can reduce the total 
computational time required for direct stability 
assessment by more than 10 times compared to the 
method based on extrapolation.  Although the 
results of assessment in design sea states cannot be 
used as operational guidance, this method can be 
used to sort out sufficiently safe loading conditions 
at a lower computational cost, and then use a more 
comprehensive method to develop operational 
guidance only for those loading conditions that fail 
direct assessment. 

Operational Guidance is defined as “the 
recommendation, information or advice to an 
operator aimed at decreasing the likelihood of 
failures and/or their consequences” [5]; it is 
assumed to be developed using outcomes of the 
direct stability assessment.  Operational Guidance 
can be implemented, in principle, according to the 
following approaches: (1) pre-computation and 
approval of Operational Guidance at the design 
stage; (2) pre-computations by an on-shore provider 
before departure; and (3) real-time computations 
during operation. 

Following option (1) Operational Guidance is 
pre-computed and approved in the design stage, 
which allows using most comprehensive numerical 
tools and statistical procedures, e.g. probabilistic 
assessment. However, such computations can be 

performed only for assumed input parameters, most 
importantly, standard seaway spectra.  Sensitivity 
of the results to the input parameters needs to be 
investigated.  In option (2), Operational Guidance is 
pre-computed by an on-shore provider before 
departure from the port, using the most actual 
weather forecast available.  This approach allows, 
in principle, using comprehensive numerical tools 
and statistical procedures.  The drawback of this 
option is the possibility of unforeseen delays in the 
ship operator time schedule.  In option (3), required 
computations are performed in real-time (on board 
or onshore) during operation, once accurate weather 
forecast is available, thus both numerical tools and 
statistical procedures have to be significantly 
simplified; note that the advantage of more accurate 
weather data may be to some degree compensated 
by reduced accuracy of numerical tools and 
statistical procedures.  Note also that “real time” 
means here simulations well before encountering 
heavy weather conditions, in order to enable route 
changing to avoid heavy weather if operational 
measures are not sufficient to achieve the required 
safety level. 

Input from all interested stakeholders is 
required to discuss advantages and drawbacks of 
options (1)-(3). 

Finally, practical approval of Level 3 
procedures (both direct stability assessment and 
operational guidance), needs quantification of the 
uncertainty of the proposed methods, both for the 
full assessment based on the extrapolation over 
wave height and for the design sea states method. 
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