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ABSTRACT 

The paper describes the qualitative study of the tails of the distribution of large-amplitude roll motions. The 

nonlinearity of a dynamical system is modeled with piecewise linear stiffness with stable and unstable 

equilibria. Closed-form formulae were derived for the peak value and its distribution. The tail of the 

distribution is heavy until in close proximity to the unstable equilibrium and then becomes light with the 

right bound at the unstable equilibrium. It is shown that the tail structure is related to the shape of the 

stiffness curve. Physical reasoning for such tail structure is based on the phase plane topology. The tail first 

becomes heavy due to stretching of the phase plane, which is a result of nonlinearity. The inflection point in 

the tail (when it becomes light) is related to increased capsizing probability in the vicinity of unstable 

equilibrium; the position of the inflection point can be evaluated, defining domain of heavy tail applicability. 
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1. INTRODUCTION 

Probabilistic assessment of partial dynamic 

stability failure is essentially an extreme value 

problem for nonlinear roll motions. Some progress 

has been recently reported by Campbell, et al 

(2016) on applying Generalized Pareto distribution 

(GPD) to model the extreme values of roll peaks, 

above appropriate threshold (Coles, 2001). 

Mathematical aspects of the problem are treated in 

(Glotzer et al 2016). Statistical validation of this 

method was described by Smith and Zuzick (2015). 

While, in general, the method has shown 

satisfactory performance, its accuracy may be 

improved by applying one-parameter GPD instead 

of two-parameter GPD. It requires introducing a 

relation between the GPD parameters based on 

physical properties of the dynamical system. This 

relation is the main objective of this paper. 

Normally, GPD has two parameters: shape and 

scale. If the shape parameter equals zero, GPD 

turns into the exponential distribution. This is the 

case of a normally distributed quantity; distribution 

of its extreme values can be approximated by the 

exponential distribution. If the shape parameter is 

positive, the tail is usually referred to as “heavy,” as 

its probability of extreme value is higher compared 

to normal/exponential case. If the shape parameter 

is negative, the probability of extreme value is 

lower compared to exponential and the tail is 

referred as “light.” One of the specific features of a 

light tail is a right bound, the upper limit of the 

distribution; all values exceeding the right bound 

have zero-probability. 

The appearance of right bound in a distribution 

of roll peaks has a clear physical reason. A peak 

implies a return after reaching a local maximum. As 

a ship may capsize, there is a limit for the roll peak, 

which should be reflected as a right bound by 

statistics. However, GPD fitting, reported in 

Campbell, et al (2016) resulted in positive shape 

parameter and no right bound.  

The question this paper tries to answer 

formulates as follows: if a ship can capsize, the tail 

of roll peak distribution should be light, so why is a 

heavy tail observed in numerical simulations?  

2. PIECEWISE LINEAR SYSTEM 

A dynamical system with piecewise linear 

stiffness is probably the simplest model of 

capsizing, as it allows recreation of correct phase 

plane topology, see Figure 1. It also allows a closed 

form solution for probability of capsizing under 

some assumptions; see review in (Belenky, et al 

2016). So consider a dynamical system: 

)()(2 2
0 tff EL    (1) 

where  is a linear damping coefficient and fE is a 

stochastic process of roll excitation, while the roll 

stiffness fL is shown in Figure 1. It is assumed that 

the excitation is “switched-off” once the roll angle 

exceeds m0, reflecting absence of resonance for 

negative GM and limited ability to react on waves. 
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Figure 1 Phase plane topology of capsize and piecewise 

linear stiffness (Belenky, et al 2016). 

Here absence of damping for >m0 is also 

assumed. While in reality roll damping is increased 

for large roll angles, it is not expected to cause 

qualitative change. In the absence of capsizing, the 

solution for the range 1 is expressed as: 
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1
  is a roll rate at upcrossing.The value of peak is 

expressed as: 

crvH  
11max 0)(  (5) 

cr  is critical roll rate corresponding to capsizing 

conditions: 

)( 11 mvcr   (6) 

3. DISTRIBUTION OF PEAKS 

Formula for the peak (3) is a deterministic 

function of a single random variable. This random 

variable is the roll rate at the instant of upcrossing. 

Assuming that the upcrossings of the level m0 are 

so rare, that is the upcrossing events can be 

assumed indendent, then the distribution of the roll 

rate at upcrossing follows Rayleigh (see Leadbetter, 

et al. 1983, Lindgren, 2013, also in Belenky, et al. 

2016): 
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Where d is a standard deviation of roll rates for 

range 0, i.e. without influence of crossings. To 

ensure that only roll peaks are considered, there is 

no capsizing and a normalizing constant is needed. 

It is equal to probability of capsizing: 
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The function (5) is monotonic; the distribution 

of this function is: 
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where G-1is an inverse of the function (5) 
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Substitution of (10) and (8) into (9) yields the 

following distribution density. 
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Distribution (11) is plotted in Figure 2. 

 

Figure 2 Distribution of peaks of piecewise linear and 

linear response 
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To see if the distribution (11) has a heavy tail, 

compare it to the distribution of peak of a linear 

system, corresponding to the range 0. Distribution 

of large peaks of a linear system can be 

approximated with truncated Rayleigh distribution 

(Belenky and Campbell 2012):  
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The tail of Rayleigh distribution can be 

approximated with exponential distribution; thus 

equation (13) may serve as benchmark; a larger 

probability than (13) means heavy tail. Figure 2 

shows that the piecewise linear system produces 

this heavy tail through practically the entire 

range 1. Then, it reaches an inflection point and 

quickly tends to zero.  

Figure 2 answers the question, posed at the end 

of section 1. The tail actually is heavy for most of 

the interval and then turns light in the vicinity of 

unstable equilibrium.  

Peaks of the response of the piecewise linear 

system with unstable equilibrium shows an 

interesting behavior. The “true” limiting 

distribution has a light tail, but a heavy tail can be 

used for approximation at least until the “inflection 

point.” One may say that the piecewise linear 

system has two tails. What are the conditions for 

having two tails? 

4. DEPENDENCE ON THE SECOND SLOPE 

Consider behavior of the distribution (11) when 

the slope coefficient k1 tends to zero. Using the 

relation between k1 and the position of unstable 

equilibrium  
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When k1 reaches zero, the unstable equilibrium 

ceases to exist.  
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The limit transition converts equation (11) into 

the exponential distribution: 
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The process of this limit transition is illustrated 

below. The slope of the range 1 is changed 

systematically from -1 to 0, as plotted in Figure 3. 

Figure 4 shows corresponding changes in the 

distribution of the peaks. The heavy part of the tail 

becomes lighter, until it reaches the exponential 

distribution (16) for k1=0. The “inflection point” 

moves to the right, until it eventually disappears 

when the position of unstable equilibrium goes to 

infinity. 

 

Figure 3 Variation of piecewise linear stiffness  

 

Figure 4 Distribution of peaks of pricewise linear response 

for different slopes of the second range 

The changes in the slope coefficient for the 

range 1 mean changes in the shape of stiffness. 

Thus, shape of the stiffness after the maximum 

defines the shape of the tail, while the position of 

the unstable equilibrium defines the position of the 

“inflection point.” The softening nonlinearity 

(k1>0) seems to be responsible for the “two-tails” 

structure. It disappears when k1 becomes zero. 
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5. WHITE NOISE EXCITATION 

The relation between “two-tails” structure, 

shape of stiffness and presence/absence of the 

unstable equilibrium points to a possible 

fundamental relation between the distribution and 

topology of the phase plane. This link may be 

revealed if one gets a closed-form expression for 

joint distribution of motions and velocities. It can 

be done using the Kolmogorov-Fokker-Plank 

equation, if white noise excitation is assumed. 

Indeed, it is far from reality, but the system (1) 

under white noise excitation may have similar 

relation between the distribution and phase plane.  

Assuming 

)()( tWstfE
  (17) 

where W(t) is Wiener process and s its scaling 

factor or intencity. The the steady-state joint 

distribution of the motions and velocities is 

expressed as (see e.g. Sobczyk, 1991): 
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where CW is a normalizing constant and H(..) is the 

Hamiltonian (total energy without disspation) of the 

dynamical system (1) 
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Potential V() is symmetrical relative to the 

origin and for  < v is expressed as: 
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The current study is focused on the properties 

of the tail of large-amplitude response, so the 

distribution (18) needs to be limited to non-

capsizing case. In terms of phase plane, it 

corresponds only to the area within the separatrix, 

see Figure 5. The Hamiltonian implicitly contains 

definition of the separatrix, as it is the only line 

going through the unstable equilibria: 

)()0,()(  VH vs
  (21) 

The distribution of piecewise linear response, 

not leading to capsizing is expressed as: 
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where CS is another normalizing constant. 

 

Figure 5 Separatrix and non-capsizing area 

Figure 6 shows distribution of piecewise linear 

response under the “no-capsize” condition 

computed with formula (22). This distribution has 

three distinct regions: Gaussian core (i), heavy 

tail (ii) and light tail (iii). The structure of the tail is 

exactly the same as in the previous case in Figure 2, 

where excitation was correlated but switched off 

above the knuckle point (where damping was 

absent, too). 

 

Figure 6 Distribution of piecewise linear response under 

no-capsize condition 

The result in Figure 6, is one more argument 

that the structure of the tail is defined by stiffness 

shape. Thus, the correlation of the excitation can be 

neglected for this type of qualitative study. This 

provides a number of research tools that can only 

be applied for white noise excitation. 

6. HEAVY TAIL STRUCTURE 

Two previous sections presented some 

arguments that the observed tail structure is a result 

of the stiffness shape, and presence of the unstable 

equilibrium, in particular. Presence of the unstable 

equilibrium makes nonlinearity soft. The piecewise 
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from a nonlinear system with smooth stiffness, as 

most known qualitative properties are present 

(Belenky, 2000).  

vv m0m0
0 

PDF of piecewise linear response 

without capsizing 

Inflection point 

. 


v

Separatrix 





 

   

Proceedings of the 15th International Ship Stability Workshop, 13-15 June 2016, Stockholm, Sweden 5 

Figure 7 compares linear and piecewise / 

nonlinear systems both in terms of potential and 

phase plane. As the linear system contains more 

potential energy, the potential function of the 

piecewise system is always below the linear one. 

The phase trajectories are, in fact, the level lines of 

the potential function. As a result the phase plane of 

the piecewise linear system (1) or a system with 

softening nonlinear stiffness is stretched compared 

to a linear system. 

 

Figure 7 Stretching of the phase plane caused by soft 

nonlinearity of stiffness 

Another way to illustrate this stretching is to 

compare short portions of time history of the 

piecewise linear system. Both responses start at the 

same time instant at the “knuckle” point with the 

same initial velocity. As it can be seen from Figure 

8, the response of the piecewise linear system (2) is 

always above the similar linear response. 

This also means that the piecewise linear 

system spends more time above the knuckle point 

that the linear system under the same initial 

conditions. As a result, probability of finding the 

piecewise linear system above the knuckle point is 

higher and the tail of the response is heavier than 

the linear one. 

Also, one can see at Figure 8 that the local 

maximum of the piecewise linear response is larger 

than the linear one. Thus the tail of peaks of the 

nonlinear response is heavier than the linear one, as 

it can be seen in Figure 2. 

 

Figure 8 Piecewise linear response above the knuckle point 

vs. linear response 

7. LIGHT TAIL STRUCTURE 

Obviously, the tail of both response and its 

peaks becomes light because of the presence of 

unstable equilibrium. Consider how it is reflected in 

the distribution (22), by substitution formula (18) 
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The integrand is in fact the normal distribution 

as: 
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The integral term does not play much of a role 

when the motion displacement is far from the 

unstable equilibrium. The separatrix goes through 

very large velocities for most of range 2 and the 

integral in (23) is close to one (after being 

multiplied by its normalizing constant). Once the 

motion approaches the unstable equilibrium, the 

limits of integration do get close to each other. As a 

result the integral term in (23) decreases and forces 

the entire distribution down, until it reaches zero at 

the point of unstable equilibrium. 

Understanding of this mechanism allows 

estimation of the position of the inflection point. It 

can be checked that the logarithm of the 

distribution (11) has the inflection point at: 
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Position of the inflection point defines a 

boundary of the heavy tail range and it should be 

possible to find it for a general nonlinear system. 

8. CONCULSIONS  

The original motivation for this study was to 

answer a simple question, why the GPD fit shows a 

heavy tail for peaks of roll motions, when it is 

expected to be light because a ship can capsize and 

the peaks cannot exceed a certain limit. The answer 

was found by analyzing a dynamical system with 

an unstable equilibrium and piecewise linear 

stiffness. The distribution has “two-tails” structure: 

it is heavy at first, but becomes light in close 

vicinity of the unstable equilibrium. 

This “two-tails” structure is a result of the 

presence of an unstable equilibrium and related 

softening nonlinear stiffness. The heavy tail is a 

result of stretching of the phase plane. The light tail 

appears in close vicinity to the unstable 

equilibrium, where most trajectories lead to 

capsizing so the probability of non-capsizing is 

very small.  

The “inflection point” of the tails is the 

boundary between heavy and light tail. Its position 

can be found and used as a limit of applicability of 

the heavy tail assumption.  

The shape of stiffness and related topology of 

the phase plane is the main factor defining the tail 

structure of the response of dynamical system. 

Qualitative tail structure seems to be the same for 

the dynamical system with correlated or white noise 

excitation. 

Further research includes a wider variety of 

nonlinear dynamical systems, as well as metrics of 

likelihood of capsizing and broaching-to. A 

technique for estimation of the position of the 

“inflection point” should be developed for generic 

nonlinear systems and eventually use this 

information to reduce uncertainty of GPD fit. 

9. ACKNOWLEGEMENT 

The work described in this paper has been 

funded by the Office of Naval Research under 

Dr. Thomas Fu and by NSWCCD Independent 

Applied Research (IAR) program. Particiaption of 

Prof. Pipiras and Prof. Sapsis was was facilitated by 

the Summer Faculty Program supported by ONR 

and managed by NSWCCD under Dr. Jack Price, 

who also managed IAR program. Particpation of 

Mr. Glozter was facilated by NWCDD NREIP 

program managed by Ms. Rachel Luu. 

10. REFERENCES  

Belenky, V. L., (2000) “Piecewise linear 

approach to nonlinear ship dynamics”, in 

Contemporary Ideas on Ship Stability Vassalos, D., 

Hamamoto, M., Papanikolaou, A. and D. 

Molyneux, eds., Elsevier, pp.149-160. 

Belenky, V. and Campbell, B. (2012) 

“Statistical Extrapolation for Direct Stability 

Assessment”, Proc. 11th Intl. Conf. on Stability of 

Ships and Ocean Vehicles STAB 2012, Athens, 

Greece, pp. 243-256 

Belenky, V., Weems, K. and K. Spyrou (2016) 

“Towards a Split-Time Method for Estimation of 

Probability of Surf-Riding in Irregular Seas”, in 

Ocean Engineering (in Press DOI: 

10.1016/j.oceaneng.2016.04.003). 

Campbell, B., Belenky, V. and V. Pipiras 

(2016) “Application of the Envelope Peaks over 

Threshold (EPOT) Method for Probabilistic 

Assessment of Dynamic Stability, in Ocean Eng. 

(DOI: 10.1016/j.oceaneng.2016.03.006). 

Coles, S., 2001 An Introduction to Statistical 

Modeling of Extreme Values. Springer, London. 

Glotzer, D., Pipiras, V., Belenky, V., Campbell, 

B., T. Smith, (2016) "Confidence Interval for 

Exceedance Probabilities with Application to 

Extreme Ship Motions", REVSTAT Statistical J. 

(Accepted). 

Leadbetter, M. R., Lindgren, G. & Rootzen, H. 

(1983), Extremes and Related Properties of 

Random Sequences and Processes, Springer Series 

in Statistics, Springer-Verlag, New York-Berlin 

Lindgren, G. (2013), Stationary Stochastic 

Processes, Chapman & Hall/CRC Texts in 

Statistical Science Series, CRC Press, Boca Raton, 

FL. Theory and applications 

Smith, T. C., and Zuzick, A., (2015) “Validation 

of Statistical Extrapolation Methods for Large 

Motion Prediction” in Proc. 12th Intl. Conf. on 

Stability of Ships and Ocean Vehicles (STAB 

2015), Glasgow, UK. 

Sobczyk, K. (1991), Stochastic Differential 

Equations, Kluwer Academic Publishers, 

Dordrecht, The Netherlands. 


