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ABSTRACT 

The analysis of different numerical procedures for nonlinear equations describing strong waves evolution is 

carried out. We have chosen master equation, that is the generalization of Kadomtsev-Petviashvili-I Equation 

(KPI), that shows major part of the problems in ocean waves evolution and at the same time most difficult 

from the point of view of numerical algorithm stability. Some indications for choosing of correct numerical 

procedures are given. 
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In the numerical integration of KPI equation 

instead of the original equation its integral-

differential analogue is considered 

𝑢𝑡 + 0.5(𝑢2)𝑥 + 𝛽𝑢𝑥𝑥𝑥 = 

𝜂 ∫ 𝑢𝑦𝑦

𝑥

−∞

(𝑥′, 𝑦, 𝑡)𝑑𝑥′ + 𝐺(𝑥, 𝑦) 
(1) 

The solution of equation (1) in the half-plane 

𝑡 ≥ 0 is sought for the initial distribution 

𝑢(𝑥, 𝑦, 0) = 𝑞(𝑥, 𝑦). 

Numerical simulation of the equation (1) is 

carried out using linearized implicit finite-

difference scheme, with, in some cases, flux 

correction technique (FCT). 

Solution of the equation (1) is performed using 

the approximation for the central-difference 

operators. The order of approximation of a 

difference scheme in the calculation is of the order 

of 𝑂(∆𝑡, ∆𝑥2, ∆𝑦2). The resulting system of 

difference equations is reduced to the form: 

𝑎𝑗∆𝑢𝑗−2,𝑘
𝑛+1 +𝑏𝑗∆𝑢𝑗−1,𝑘

𝑛+1 + 𝑐𝑗∆𝑢𝑗𝑘
𝑛+1 + 

𝑑𝑗∆𝑢𝑗+1,𝑘
𝑛+1 + 𝑒𝑗∆𝑢𝑗+2,𝑘

𝑛+1 = 𝑓𝑗𝑘
𝑛  

(2) 

with ∆𝑢𝑗𝑘
𝑛+1 = 𝑢𝑗𝑘

𝑛+1 − 𝑢𝑗𝑘
𝑛 .  

The system (2) is solved by the five-point 

sweep (Thomas algorithm).  

At the boundaries of the computational domain 

[𝑥1, 𝑥𝑀] × [𝑦1, 𝑦𝐿] set of difference boundary 

conditions is imposed. Traditionally the so-called 

"flow conditions" are used: 𝑢𝑥 = 𝑢𝑥𝑥 = 0 along the 

boundary lines 𝑥1 and 𝑥𝑀, and 𝑢𝑦 = 0 along the 

lines 𝑦1 и 𝑦𝐿.  

As the initial distributions three surfaces were 

selected: 

1. The parallelepiped.  

2. Gaussian distribution. 

3. The ellipsoid of rotation. 

In our case, we want to investigate the influence 

of the shape of the initial distribution on the further 

evolution of the perturbation. To unify the choice of 

distribution parameters, we fix the volume and 

variety of shapes and parameters for ellipses that fit 

into the bottom of the box.  

Compare the numerical calculation results with 

the known analytical solution of the KPI equation. 

We apply the finite-difference scheme (2) for 

the equation, similar to (1): 

[𝑢𝑡 + 3(𝑢2)𝑥 + 𝑢𝑥𝑥𝑥]𝑥 = 3𝑢𝑦𝑦 (3) 

For the equation (3) there exist lump type soliton 

solution, i.e. in the form: 

𝑢(𝑥, 𝑦, 𝑡) = 4
−(𝑥 − 3𝜇2𝑡)2 + 𝜇2𝑦2 + 1/𝜇2

[(𝑥 − 3𝜇2𝑡)2 + 𝜇2𝑦2 + 1/𝜇2]2
 (4) 

On fig. 1 we compare the exact solution with 

the numerical solution for a single point in time 

when 𝑦 = 0.  

One can see the results difference is within the 

tolerance accepted for purely implicit difference 

scheme. 

In KdVB equation is calculated using a 

difference scheme, which includes a flux correction 

procedure. It is interesting to examine the 

possibility of the use of this approach in our case. 
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Figure 1: Comparison of exact solution (4) with numerical 

one for 𝒕 = 𝟏𝟏. Mesh being 𝟕𝟎𝟎 × 𝟓𝟎𝟎, ∆𝒙 = ∆𝒚 = 𝟎. 𝟏,

∆𝒕 = 𝟐 · 𝟏𝟎−𝟓, 𝒚 = 𝟎. 

Finally, after the analysis carried out after 

numerical experiments, it was decided not to use, in 

general, anti-aliasing algorithm. The resulting 

numerical dispersion ripples did not significantly 

affect the nature of the perturbations and, most 

importantly, do not underestimate the amplitude 

and velocity of the soliton. 

Let us consider the dependence of the results of 

the calculation on the initial distribution. To do this, 

some of the values of geometrical parameters are 

necessary to be fixed. The volume of initial 

perturbation is the same for all figures: 𝑉 = 120. 

Calculations were carried out without smoothing 

procedure up to the time 𝑡 = 8; the number of 

nodes is 800 × 700; the time step ∆𝑡 = 5 · 10−5; 

mesh steps ∆𝑥 = ∆𝑦 = 0.1.  

 
Figure 2: The formation of solitons with different initial 

distributions for 𝒕 = 𝟖, 𝑽 = 𝟏𝟐𝟎. Mesh 𝟖𝟎𝟎 × 𝟕𝟎𝟎, ∆𝒙 =

∆𝒚 = 𝟎. 𝟏, ∆𝒕 = 𝟓 · 𝟏𝟎−𝟓, 𝒚 = 𝟎. 

As it clearly seen from fig. 2 the largest soliton is 

formed from the original form of the ellipsoid of 

revolution. 

Consider the initial distribution of Gaussian 

type, with different volumes. All calculations were 

performed without anti-aliasing. With the help of 

numerical simulation we find the situation in which 

after relatively small increase in volume, compared 

with the previous value, sharply increases the 

amplitude of the resulting soliton. The process is 

similar to the pressure jump (fig. 3). 

 
Figure 3: 3D demonstration of an abrupt increase in the 

soliton amplitude for the initial conditions of the Gaussian 

form at 𝒕 = 𝟕. Mesh 𝟓𝟎𝟎 × 𝟓𝟎𝟎, ∆𝒕 = 𝟏𝟎−𝟒, ∆𝒙 = ∆𝒚 =
𝟎. 𝟐. 

Some problems may appear when the source in 

rhs is switched on. We have selected a source in the 

form of an ellipsoid of revolution, as in the case 3 

of the initial distribution. Calculations of the 

equation (1) with a source, a natural analogue of the 

impact on the water surface, provide numerous 

options of possible situations with formation of 

large-amplitude solitons. The source itself 

generates solitons. Source intensity varies in a wide 

range. Field exposure source is limited by the 

natural conditions, but eventually forms a cluster of 

perturbations, out of which solitons of different 

amplitudes are formed. For example, we present the 

evolution of the perturbation without taking into 

account the initial distribution of any type (see 

Fig.4). 

 
Figure 4: 3D perturbation generated by a source at 

𝒕 = 𝟏𝟓. 𝟓. Mesh 6𝟎𝟎 × 𝟖𝟓𝟎, ∆𝒕 = 𝟏𝟎−𝟒, ∆𝒙 = ∆𝒚 = 𝟎. 𝟐. 

CONCLUSIONS 

Some indications for choosing of correct 

numerical procedures from our study can be 

formulated as follows 

1. The proposed scheme has a sufficient 

resolution for areas with large gradients.   
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2. Our approach effectively describes the 

process of soliton formation and propagation with 

their characteristics preservation. 

3. That scheme satisfactorily calculates cases 

with initial distributions that are not completely 

integrable. 

4. The time step strongly depends on the initial 

distribution, since the evolution of the perturbation 

leads to a velocity in the order of magnitude greater 

than is seen with a linear analog of KPI equation  

5. Using of the smoothing procedure leads 

eventually to an underestimation of the amplitudes 

of the solitons. The need for a FCT procedure is not 

obvious. 
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