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ABSTRACT

When modeling a random phenomenon (e.g. ship motions in irregular seas), data are often available from
multiple sources, or models, of varying fidelity, those with higher fidelity carrying higher costs. Multifidelity
uncertainty quantification (UQ) offers tools that allow using lower-fidelity and lower-cost models to inform
decisions being made about high-fidelity models. With a few exceptions though, much of the focus of the
multifidelity UQ literature has been on characterizing uncertainty related to averages, in the context of non-
rare problems where data are available to estimate these averages directly. In this work, we extend some
multifidelity UQ methods to estimation of probabilities of rare events, possibly those that have not been
observed in high-fidelity data. The suggested approach is based on bivariate extreme value theory, applied to
simultaneously large observations from low-fidelity and high-fidelity models. The ideas are illustrated on
simulated data associated with ship motions. It is not assumed that the reader is familiar with multifidelity UQ,
with the discussion focusing on the most basic setting and building naturally from the recalled methods for
non-rare problems.
Keywords: Uncertainty Quantification, Multifidelity Estimators, Bivariate Extremes, Sampling Variability, Probability of Rare Event,
Nonlinear Random Oscillator, Ship Motions.

1. INTRODUCTION
When studying random phenomena of interest, it

is common to examine data from multiple sources or
models. For example, ship motions or loads data can
be collected from a model basin or sea trials, or
generated from various computer programs, e.g.
SimpleCode (Weems and Wunrow, 2013), LAMP
(Lin and Yue, 1991). With data at hand, a common
goal is to estimate some quantities of interest, for
example, mean, single significance amplitude
(SSA), etc. In this case, how should different
estimates of the same quantities of interest obtained
across multiple models be interpreted? If one of the
models is less “expensive” to run but less accurate,
how can it be used in conjunction with the more
expensive and more accurate models in order to
estimate better the quantities of interest? What does
this say about differences among the models?

These questions have been studied from various
angles as part of the Uncertainty Quantification
(UQ) literature, in particular, in the direction of the
so-called multifidelity (MF) methods. See, for
example, a recent survey paper by Peherstorfer et al.
(2018). As above, at the most basic level, the

underlying assumption of these methods is the
availability of two sets of data, one associated with
the variable ܺ௘ and the other with the variable ܺ௦,
referring to expensive (true, high-fidelity, etc.)
model and simple (low-fidelity, surrogate, etc.)
model, respectively. (We shall use the terms and
subscripts for “expensive” and “simple” throughout
this work, in lieu of perhaps more sophisticated
“high-fidelity” and “low-fidelity.”) For example, ܺ௘
could refer to CFD and ܺ௦ to LAMP calculations.
The interest is in estimating the mean (or the
expected value) ॱ(ܺ௘) of the expensive response, or
some function thereof, having the data from both
expensive and simple models. Construction and
calibration of simple models also make an important
part of MF methods, but these will not be our focus
here. That is, we suppose that data on ܺ௘ and ܺ௦ are
given and ask questions about implications of this
setting.

Estimation of the mean through available MF
methods concerns non-rare behavior of the studied
random phenomenon in that there is enough
variability in collected data to make an informed
decision about behavior of the mean. In this work,
we are interested in analogous MF methods but for
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rare problems. A working example throughout this
paper is that of estimating an exceedance probability
ℙ(ܺ௘ > for some large threshold (ݔ so that ,ݔ ܺ௘ >
is a rare event. The latter event might be so rare ݔ
that it is not even observed in the data from the
expensive model. It should be noted nevertheless
that in the latter case, the rare probability could, in
principle, still be estimated through the approach of
the statistical Extreme Value Theory (EVT); see e.g.
Coles (2001). This approach for extreme ship
motions, capsizing and other rare phenomena has
been studied quite extensively by the second author
of this work and collaborators over the past number
of years (e.g. Campbell et al., 2016; Belenky et al.,
2018, Belenky et al., 2019).

In the context of estimating a rare exceedance
probability ℙ(ܺ௘ > we are thus interested in ,(ݔ
whether and how the data for the variable ܺ௦ from
the simple model might be useful. For example,
since the simple model is thought to be inexpensive
to run, the events ܺ௦ > could, in principle, be ݔ
observed in really long records of the model. Then,
could one use the direct estimate of the probability
ℙ(ܺ௦ > for that of (ݔ ℙ(ܺ௘ > These are the  ?(ݔ
kind of questions that will be discussed in this work,
within an introduced mathematically justified
framework.

We are not aware of other works pursuing this
exact line of investigation. The closest are perhaps
MF methods for failure probabilities as in e.g.
Peherstorfer et al. (2017). These failure probabilities
though are still estimated directly, perhaps in
conjunction with importance sampling, whereas in
this work, we do so indirectly through EVT. For this
reason, the reader should also expect our approach to
appear more complex, especially to those unfamiliar
with EVT.

The MF methods discussed in this work will be
illustrated on synthetic data generated from a non-
linear random oscillator mimicking ship rolling. It
should be noted that the synthetic data framework is
for illustration purposes only; there is nothing more
expensive or simpler about either model in the
synthesis.

The rest of this work is organized as follows.
Section 2 sets some notation and introduces the more
probabilistic notions used throughout this work. In
Sections 3 and 4, we discuss and illustrate the most
basic available MF estimator when making inference

about the expected value (mean) in non-rare
problems. Sections 5 and 6 extend this MF approach
to estimating probabilities of rare events. Basic
bivariate EVT is recalled and employed in
developing the approach in Section 5. Section 7
concludes.

2. BASIC SETTING AND NOTATION
At the most basic level, we assume the following

setting. We observe two signals: ܺ௘(ݐ), ݐ ∈ [0, ௘ܶ],
from an expensive, true, high- (or maybe
engineering-level) fidelity model, and ܺ௦(ݐ), ݐ ∈
[0, ௦ܶ], from simple, surrogate, low-fidelity model.
Again, the terms “expensive” and “simple” will be
used exclusively below. The observation window
sizes ௘ܶ and ௦ܶ are such that ௘ܶ ≪ ௦ܶ, reflecting the
idea that the simple model can be run for a much
longer period of time at low cost, though the exact
costs will be mostly ignored here. More importantly,
we assume that the expensive and simple models are
run under the same “conditions” in that the error
process

(ݐ)߳ = ܺ௘(ݐ) − ܺ௦(ݐ), ݐ ∈ [0, ௘ܶ], (1)
is meaningful over the smaller observation window
[0, ௘ܶ].

Furthermore, the following notation will be
used: (ܼ)ߤ = ॱ(ܼ), (ܼ)ଶߪ = will stand for (ܼ)ݎܸܽ
a theoretical mean and variance, respectively, of a
variable ܼ or a stationary process ;(ݐ)ܼ ,(ܼ̂)ߤ (ܼ)ොଶߪ
will denote statistical estimators of the latter
quantities from data; ்ܼ̅ will refer to the sample
average of over time interval (ݐ)ܼ [0, ܶ]. The hats
used for other quantities will also refer to estimators.
For example, ℙෝ will refer to a probability estimate.

3. METHODS FOR NON-RARE PROBLEMS
In the setting described in Section 2, suppose that

one is interested in estimating the mean of (௘ܺ)ߤ ܺ௘.
A multifidelity (MF) estimator of the mean is
defined as

௠̂௙(ܺ௘)ߤ = തܺ௦, ೞ் + ்߳̅೐ (2)

or, equivalently, as
௠̂௙(ܺ௘)ߤ = തܺ௦, ೞ் + ൫ തܺ௘, ೐் − തܺ௦, ೐்൯

                           = തܺ௘, ೐் + ൫ തܺ௦, ೞ் − തܺ௦, ೐் ൯,  (3)

where the last expression is a simple rearrangement
of the previous one. For comparison, let also

଴̂(ܺ௘)ߤ = തܺ௘, ೐் (4)
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be the baseline estimator of the mean that uses only
the expensive data.

 We make several observations that might be
useful to readers unfamiliar with MF estimators.
Note that ௠̂௙(ܺ௘) is unbiased forߤ even if (௘ܺ)ߤ
(௘ܺ)ߤ ≠ This follows from Eq. (3) since .(௦ܺ)ߤ

ॱߤ௠̂௙(ܺ௘) = ॱ തܺ௦, ೞ் + ൫ॱ തܺ௘, ೐் − ॱ തܺ௦, ೐் ൯

= (௦ܺ)ߤ + ൫ߤ(ܺ௘) − ൯(௦ܺ)ߤ = .(௘ܺ)ߤ (5)

Another key observation and the crux of MF
methods is that ௠̂௙(ܺ௘) can potentially do better inߤ
estimating the mean than the baseline estimator
଴̂(ܺ௘), in the sense thatߤ

ݎܸܽ ቀߤ௠̂௙(ܺ௘)ቁ < .଴̂(ܺ௘)൯ߤ൫ݎܸܽ (6)

Indeed, suppose for simplicity that the two terms in
Eq. (2) are independent so that the variance of their
sum is the sum of the variances. The variance of the
sample average ்ܼ̅ of a stationary process (ݐ)ܼ
behaves for large ܶ as

(்ܼ̅)ݎܸܽ ≈ ஈ(௓)
்

,           (7)

where the so-called long-run variance Π(ܼ) =
∫ ஶݑ݀(ݑ)௓ߛ

ିஶ  accounts for temporal dependence in
the process having the auto-covariance function (ݐ)ܼ
(ݑ)௓ߛ = ݐ)ܼ)ݒ݋ܥ + ,(ݑ at lag ((ݐ)ܼ .Then, Eq .ݑ
(5) is equivalent (for large ௘ܶ and ௦ܶ) to

ஈ(௑ೞ)

ೞ்
+ ஈ(ఢ)

೐்
< ஈ(௑೐)

೐்
, (8)

which provides a verifiable condition for the MF
estimator to outperform the baseline. As seen from
Eq. (8), this will happen if

௘ܶ ≪ ௦ܶ    and Π(߳) <  Π(ܺ௘). (9)
The first relation of Eq. (9) is natural in the scenario
of low costs for the simple model. The second
relation in Eq. (9) states effectively that the error
between the signals of the simple and expensive
models has to be small compared to the original
expensive signal. This is also intuitive as the simple
model should be useful only if it approximates the
expensive model well. We should also note that the
key consequence of Eqs. (6) and (8) is that a normal
confidence interval for the mean would be (௘ܺ)ߤ
smaller when using ௠̂௙(ܺ௘) as its length isߤ
determined by .(௠̂௙(ܺ௘)ߤ)ݎܸܽ

In practice, the above discussion also suggests
how to proceed in estimating the mean with the
simple and expensive model data. First, estimate the
long-run variances Π(߳) and Π(ܺ௘). Estimation of

these quantities is discussed in detail in e.g. Pipiras
et al. (2018). Second, compare the resulting
estimates Π෡(߳) and Π෡(ܺ௘). If Π෡(߳) is smaller than
Π෡(ܺ௘), then the MF estimator should be preferred to
for sufficiently large ௦ܶ. Again, this would translate
into smaller confidence intervals for .(௘ܺ)ߤ

It should also be stressed that though the case of
the mean seems simplistic, it is at the core of
estimation of many quantities. For example, the
variance (௘ܺ)ݎܸܽ = ൫ܺ௘ߤ

ଶ൯ − ଶ is((௘ܺ)ߤ)
expressed through the means of a process and its
square and can be dealt with similarly.

4. ILLUSTRATION FOR NON-RARE
PROBLEMS
To illustrate the procedure of Section 3, we use

synthetic data from a non-linear random oscillator
model describing qualitatively ship rolling. More
specifically, suppose the dynamics of a stationary
process is governed by the equation (ݐ)ܺ

(ݐ)̈ܺ + (ݐ)̇ܺߜ2 + ൯(ݐ)൫ܺݎ = ,(ݐ)ܼ (10)

where ߜ > 0 is a damping parameter, is a (ݔ)ݎ
restoring force and is a zero-mean random (ݐ)ܼ
excitation. The excitation is commonly (ݐ)ܼ
assumed to be a Gaussian stationary process, with
the spectral density suggested by e.g. the
Bretschneider spectrum for wave elevations. We
further assume a piecewise linear restoring force
given by ,(ݔ)ݎ

(ݔ)ݎ = ൜߱଴
ଶݔ,                                        if |ݔ| ≤ ௠ݔ ,

−݇߱଴
ଶ(ݔ − (௠ݔ + ߱଴

ଶݔ௠ ,   if |ݔ| > ௠ݔ ,
      (11)

where ߱଴ is a natural frequency of the system, ௠ isݔ
referred to as a knuckle point (separating the linear
and nonlinear regimes) and ݇ > 0 enters into the
negative slope of the nonlinear part. The restoring
force has a softening shape for |ݔ| > ௠, typical inݔ
modeling ship motions.

Figure 1 presents time plots of two realizations
of the random oscillator model in Eq. (10), labeled
expensive and simple. For the expensive signal ܺ௘,
the values ଴ݓ = 0.6, ߜ = ,଴ݓ0.15 ݇ = 1, ௠ݔ =
are taken. The same values were used for 180/ߨ30
the simple signal ܺ௦, except that ݇ = 0.3 and the
variance for the excitation is smaller. We emphasize
again that these expensive and simple signals are
called so for illustration purposes only; there is
nothing more expensive or simpler, or high- or low-
fidelity about either of the signals. The signals were
generated for ௘ܶ = 3600 seconds (1 hour) and ௦ܶ =
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36000 seconds (10 hours).  Figure 2 depicts the time
plot of the error process between the two signals (ݐ)߳
for the first 360 seconds. Note that the vertical scale
in Figure 2 is much smaller compared to that in
Figure 1, suggesting that the simple model might be
a good approximation for the expensive model.

Figure 1: Two realizations of random oscillator model.

Figure 2: The error process for two realizations in Figure 1.

For the two signals, the long-run variances
estimated through triangular kernel and
“decorrelation time” bandwidth (see Pipiras et al.,
2018) were Π෡(߳) = 0.0001 and Π෡(ܺ௘) = 0.0051.
Clearly, Π෡(߳) is smaller than Π෡(ܺ௘) by an order of
magnitude. In this case, the MF estimator is
preferred for ௦ܶ larger than ௘ܶ. The confidence
interval for the mean resulting from the MF
estimator is depicted in Figure 3 (the right vertical
segment) in comparison to the confidence interval if
the baseline estimator is used (the left vertical
segment). The two mean estimates are indicated as
circles on the two confidence intervals.

Figure 3: Confidence intervals for the mean based on the
baseline and the MF estimator.

Figure 3 shows a clear benefit of the MF
estimator and the simple signal in this case. Again,
what makes this possible is a relatively small
variance of the error process for the two signals and
the fact that ௦ܶ >  ௘ܶ . This should not be taken for
granted in a given situation and might require proper
calibration of the simple and expensive models.

5. METHODS FOR RARE PROBLEMS
We would like to extend the methods described

in Sections 3 and 4 to estimation of an exceedance
probability ℙ(ܺ௘ > for large target (ݔ For .ݔ
oscillating signals related to ship dynamics, ܺ௘ in the
exceedance probability typically represents suitable
peaks of the signal, perhaps even peaks of an
envelope (e.g. Campbell et al., 2016). To simplify
the discussion and for technical reasons, we shall
further assume that ܺ௘ represents block maxima of
the peaks. If needed, block maxima exceeding a
critical value could be translated to peak
exceedances per unit time.

Figure 4 illustrates the notions of peaks and
block maxima on the same synthetic data as in
Section 3, where 10 hours of data are used with both
expensive and simple models. The figure depicts a
scatterplot of peaks from the expensive and simple
signals, and in a darker shade, the respective block
maxima are marked for 39 blocks of size 30.  In this
setting, for example, one might be interested to
estimate ℙ(ܺ௘ > 1.5), with no occurrences of the
event ܺ௘ > 1.5 in the data as can be seen from
Figure 4. Would having potentially larger simple
model data for ܺ௦ help in this case, and through what
method?
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Figure 4: Scatterplot of peaks and block maxima for the
simple and expensive models.

Before addressing these questions, it is
instructive to discuss what the baseline estimator for
ℙ(ܺ௘ > is, without the availability of (ݔ ܺ௦ from the
simple model. It is known from the statistical
Extreme Value Theory (EVT) that the distribution of
the block maxima follows approximately that of a
generalized extreme value (GEV) distribution as

ℙ(ܺ௘ ≤ (ଵݖ = ݁ି௬భ , (12)
where

ଵݕ = (ଵݖ)ଵݕ = ቀ1 + ଵߦ
௭భିఓభ

ఙభ
ቁ

ା

ିଵ/కభ
(13)

with location, scale and shape parameters ,ଵߤ ଵ andߪ
ଵ, respectively, and the subscript + indicating theߦ
positive part of the function. After fitting these
parameters to the data, the GEV distribution in Eq.
(12) would be used to “extrapolate” into the tail
ܺ௘ > A confidence interval for .ݔ ℙ(ܺ௘ > could (ݔ
also be provided.

Suppose now that the block maxima ܺ௦ are
available for the simple model as well. To see how
they could be used together with ܺ௘, we need an
analogue of Eq. (5). At the population (theoretical)
level, consider
ℙ(ܺ௘ > (ݔ =  ℙ(ܺ௦ > (ݕ + (ℙ(ܺ௘ > (ݔ − ℙ(ܺ௦ > ((ݕ

and, after rewriting the difference in the parentheses,
ℙ(ܺ௘ > (ݔ = ℙ(ܺ௦ > (ݕ + ℙ(߳), (14)

where
ℙ(߳) = ℙ(ܺ௘ > ,ݔ ܺ௦ ≤ (ݕ − ℙ(ܺ௘ ≤ ,ݔ ܺ௦ > (15)  .(ݕ

We view Eqs. (14) and (15) as analogues of Eq. (5).
That is, ℙ(ܺ௘ > for the expensive model is being (ݔ
replaced by ℙ(ܺ௦ > for the simple model, with (ݕ

the error probability ℙ(߳). The error probability in
Eq. (15) is expressed in terms of the joint behavior
of ܺ௘ and ܺ௦, and could be expected small if the
simple model is a good approximation to the
expensive model at the extremes. The value could ݕ
but does not have to be equal to in fact, in analogy ;ݔ
to Eq. (5) where and (௘ܺ)ߤ ,can be different (௦ܺ)ߤ
having different and ݕ .can be critical ݔ

Turning to estimation, the probability ℙ(ܺ௦ >
in Eq. (14) could, in principle, be estimated (ݕ
directly if needed, by taking a large enough ௦ܶ. The
probabilities in Eq. (15), however, need to be
estimated from the data on ܺ௘ and ܺ௦ gathered under
the same conditions over the smaller observation
window of size ௘ܶ. This is where bivariate GEV
distributions come in, as those modeling the joint
behavior of ܺ௘ and ܺ௦. As in Eqs. (12) and (13), let

ℙ(ܺ௦ ≤ (ଶݖ = ݁ି௬మ , (16)
where

ଶݕ = (ଶݖ)ଶݕ = ቀ1 + ଶߦ
௭మିఓమ

ఙమ
ቁ

ା

ିଵ/కమ
(17)

with a similar set of parameters. The cross-
dependence between the two variables ܺ௘ and ܺ௦ of
a bivariate GEV is described through a dependence
function for example, as in ,ܣ

ℙ(ܺ௘ ≤ ,ଵݖ ܺ௦ ≤ (ଶݖ = ݁ି(௬భା௬మ)஺ቀ ೤భ
೤భశ೤మ

ቁ,     (18)
where ଵ andݕ ଶ are given in Eqs. (13) and (17). Theݕ
function is defined for (ݐ)ܣ ݐ ∈ [0,1], is convex and
satisfies max (ݐ, 1 − (ݐ ≤ (ݐ)ܣ ≤ 1, (0)ܣ = (1)ܣ =
1. (See Figure 5 for a plot of such functions.) The
case of (ݐ)ܣ = 1 for all ݐ ∈ [0,1] corresponds to
independence of ܺ௘ and ܺ௦, since in this case
ℙ(ܺ௘ ≤ ,ଵݖ ܺ௦ ≤ (ଶݖ = ݁ି(௬భା௬మ) is the product of
the marginals in Eqs. (12) and (16), and that of
(0.5)ܣ = 0.5 to their complete dependence.   There
are parametric models for that can be fitted in (ݐ)ܣ
practice.

After a bivariate model is fitted to ܺ௘ and ܺ௦, one
could obtain an estimate ℙෝ(߳) of the error
probability, and also the estimate ℙෝ(ܺ௦ > of the (ݕ
error probability (in the same way as the baseline
estimator ℙෝ(ܺ௘ > leading to the MF estimator ,((ݔ

ℙ෡(ܺ௘ > (ݔ = ℙ෡(ܺ௦ > (ݕ + ℙ෡(߳). (19)
A confidence interval can be constructed to go with
ℙ෡(߳). For large enough ௦ܶ, the variability of
ℙ෡(ܺ௦ > .can be thought negligible in comparison (ݕ
If the variability expressed through a confidence
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interval on ℙ෡(߳) is smaller than that of the baseline
estimate ℙෝ(ܺ௘ > .then the MF estimate in Eq ,(ݔ
(19) should be preferred. In practice, we suggest
choosing as the point corresponding to ݕ through ݔ
the regression line of ܺ௘ on ܺ௦.

6. ILLUSTRATION FOR RARE PROBLEMS
We illustrate the ideas of Section 5 on the same

synthetic data used in Section 4 and also in Figure 4.
For this example, the estimated marginal parameters
(and their standard errors in parentheses) are: ଵ̂ߤ =
0.5475 (0.0083), ොଵߪ = 0.0471 (0.0060), መଵߦ =
0.3876 (0.1118) and ଶ̂ߤ = 0.6431 (0.0102), ොଶߪ =
0.0577 (0.0075), መଶߦ = 0.3963 (0.1128). Figure 5
presents estimation of the function .entering Eq (ݐ)ܣ
(18) and modeling dependence through four
parametric models. (For reference, the function
max (ݐ, 1 − is also plotted in Figure 5.) Since (ݐ
are close to (0.5)ܣ 0.5 (see the discussion following
Eq. (18)), the resulting plot suggests that the
bivariate block maxima of ܺ௘ and ܺ௦ are quite
strongly correlated. This is also consistent with the
scatterplot of the block maxima (in a darker shade)
in Figure 4.

Figure 5: Estimation of through four parametric (࢚)࡭
models.

Figure 6 depicts the resulting baseline and MF
probability estimates and their variability in vertical
segments for the target ݔ = 1.5. In producing the
plot, we treated the fitted bivariate GEV model as the
truth, with the horizontal line and the middle circle
in the first vertical segment as the baseline estimator
representing the true GEV probability ℙ(ܺ௘ > 1.5).
Variability is measured by generating data from the
bivariate GEV model, re-estimating the probability
ℙ(ܺ௘ > 1.5), either through the baseline or the MF

estimator, and taking the 0.025th and 0.975th
quantiles of the obtained estimates as the endpoints
of the vertical segments.

Figure 6: The baseline (left) and MF (right) probability
estimates with confidence intervals.

 Since the variability of the MF estimator is
smaller than that of the baseline, the MF estimator is
preferred. It should also be stressed that this is very
much a result of strong extremal dependence in the
simple and expensive models. Were the dependence
not as strong (as expressed through the function (ݐ)ܣ
and which can be checked easily), the effect seen in
Figure 6 would not be present.

7. CONCLUSIONS
In this work, we showed how a basic MF

estimator for low-fidelity and high-fidelity models
for non-rare problems could be adapted to estimate
probabilities of rare events, especially those that are
not observed in high-fidelity data. At a technical
level, our approach was rooted in bivariate EVT, that
allows modeling simultaneously extremes from the
low-fidelity and high-fidelity models. The ideas
were illustrated on synthetic data mimicking ship
roll motion.

Several directions related to this work could be
pursued in the future. First, the methodology should
be applied to more realistic models of ship dynamics.
Our first attempt in this direction was to compare roll
extremes from SimpleCode and LAMP, but their
dependence was not strong enough to warrant the
use of MF methods. This could partly be a result of
the lack of calibration between the two models,
which is a topic of its own interest. Second, an even
more mathematical treatment of the issues presented
in Sections 5 and 6 should also be undertaken, for
example, with the introduction of costs, a more
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careful construction of confidence intervals, and the
use of bivariate peaks-over-threshold methods
instead of block maxima, etc.
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