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ABSTRACT  

In this work, the authors investigated a low-speed broaching-to phenomenon of a ship in stern 
quartering waves with nonlinear dynamics using a surge-sway-yaw-roll simulation model. As a 
result, a standard bifurcation technique of periodic orbits confirmed the occurrence of the 
phenomenon as a flip bifurcation, which had been identified in the previous works.  The calculation 
of Lyapunov exponents demonstrates that this phenomenon could result in chaos via a Feigenbaum 
cascade.  The experimental record of this phenomenon is also presented with a physical model of 
the ONR tumblehome. Further, to prevent this phenomenon, an optimal control theory is applied. 
Here the optimal control law was numerically obtained by a nonlinear programming technique for 
minimising the performance index, which is defined as the variance of yaw angle. The obtained 
control successfully prevents the occurrence of yaw instability. This suggests, if this conclusion is 
widely applicable for ships, that this low-speed broaching could be avoided by appropriate 
operation so that it could be noted in physics-based operational guidance but it does not have to be 
included in a design criterion. 
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1. INTRODUCTION 

At the IMO, new-generation intact stability 
criteria are now under development for three 
major capsizing scenarios (Japan et al., 2007). 
Manoeuvring-related problem such as 
broaching-to is one of these problems. So far, 
broaching-to associated with surf-riding has 
been investigated from various aspects (e.g. 
Motora et al., 1982). This phenomenon occurs 
when a ship runs with relatively high-speed, 
e.g. the Froude number of 0.3 or over in 
following and quartering seas, and it was well 
confirmed that it could result in capsizing of 
even a ship complying with the current 
prescriptive criteria. On the other hand, it was 
mentioned in literature (Oakley et al., 1974) 
that another type of broaching could occur at 
lower speed. Here a ship is overtaken by waves 
but her oscillatory yaw motion could 

drastically develop. Kan (1990) observed a 
period-doubling bifurcation of roll and yaw in 
his free-running model experiments. Spyrou 
(1996, 1997) reproduced this phenomenon 
using numerical simulations and explained it as 
a sequence of flip and fold bifurcations. This 
phenomenon also can be interpreted as  
parametric resonance or Mathieu type  
instability in yaw in Nomoto’s KT 
manoeuvring model with wave-induced yaw 
moment. It was also shown in the above 
references that this type of broaching can be 
avoided by increasing differential control gain. 
Since broaching can be regarded as inability of 
course-keeping despite the application of 
maximum steering effort, whether optimal 
control can exclude yaw instability or not is 
one of crucial questions for regulators and 
operators. Recently the authors also observed 
such yaw instability in their free-running model 
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experiments during an attempt for simulating 
optimal control in waves. Then, to supplement 
existing numerical simulation for further 
understanding this phenomenon, stability of 
periodic orbits is systematically investigated. 
Further we attempted to more directly obtain an 
answer to the question that the maximum 
steering effort can exclude yaw instability in 
light of optimal control theory with a proposed 
performance index.  

2. FREE RUNNING MODEL 
EXPERIMENT 

As mentioned above, experimental result 
about subharmonic yaw motion was reported 
by Kan (1990). At that time he used a container 
ship model, then he measured yaw instability 
and capsizing caused by this phenomenon. On 
the other hand, we also measured yaw 
instability in a seakeeping and manoeuvring 
basin of NRIFE (National Research Institute of 
Fisheries Engineering), with the ONR (Office 
of Naval Research) tumblehome vessel. Her 
principal particulars, body plan and photo are 
shown in Table 1, Fig.1 and Fig.2, respectively.  
 
Table 1. Principal particulars of the ONR 
tumblehome vessel. 

 

 
Figure 1.Body plan of the ONR tumblehome 
vessel. 

      
Figure 2. Photo of the used model ship. 

This is a good example of a high-speed 
slender vessel, and has its comprehensive data 
in the public domain. Her above-water hull has 
tumblehome and a wave-piercing bow. The 
ship is equipped with twin screws and twin 
rudders. The details of the experiments were 
reported by Umeda et al. (2008A). 
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Figure 3. Time history of sub-harmonic motion 
obtained from experiment with / 0.05H λ = , 

/ 1.25Lλ =  and the auto pilot course of −22.5 
degrees with 0.3Fn = . 

Here the ship model initially drifted near 
the wave maker and then the propellers and the 
autopilot control were activated. The propeller 
revolutions were set to attempt to control the 
specified nominal Froude numbers during the 
model runs and a proportional autopilot with 
the rudder gain of 100.0 was used. The reason 
why we used such large rudder gain is to 
roughly simulate a Bang-Bang rudder control. 

Items Ship 
Length : L 154.0 m
Breadth : B 18.78 m
Depth : D 14.50 m
Draught : d 5.494 m
Block coefficient : Cb 0.5354 
Metacentric hight : GM 2.068 m
L.C.B. (aft) 2.587 m
Rudder Area Ratio 1/14.77 
Radius of gyration in pitch: 
Κyy/L 0.246 
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Fig.3 and Fig.4 indicate the time histories of 
ship motion as an example of yaw instability. 
However this Bang-Bang-typed but non-
optimal control itself has strong nonlinearity so 
that it could lead to this phenomenon. 
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Figure 4. Time history of sub-harmonic motion 
obtained from experiment with / 0.05H λ = , 

/ 1.25Lλ =  and the auto pilot course of −22.5 
degrees with 0.35Fn = . 
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Figure 5. Phase trajectories of sub-harmonic 
motion obtained from experiment with 

/ 0.05H λ = , / 1.25Lλ =  and the auto pilot 
course of −22.5 degrees with 0.3Fn = . 
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Figure 6. Phase trajectories of sub-harmonic 
motion obtained from experiment with 

/ 0.05H λ = , / 1.25Lλ =  and the auto pilot 
course of −22.5 degrees with 0.35Fn = . 

From both figures it is found that the period 
of pitch motion, namely the encounter period 
approximately, is twice as long as the period of 
other ship motion mode. Unfortunately because 
of the limitation on the tank size, longer record 
is not available, so that it cannot be concluded 
whether the amplitude of yawing angle 
becomes larger or not. To specify the relation 
of the encounter period and the period of other 
motion modes, we show projections of the 
trajectories onto pitch-roll and pitch-yaw 

planes as Fig.5 and Fig.6. Here a transition to a 
periodic state is not confirmed in each figure. 
Comparing the time history and the plot of its 
projection, it is found that the trajectories tend 
to double period attractors.  

3. MATHEMATICAL MODEL 

The mathematical model used in this paper 
is a manoeuvring model of the surge-sway-
yaw-roll motion developed for prediction of 
broaching associated with surf-riding in 
following and quartering waves (Umeda, 1999). 
In cases of ship runs with higher forward 
velocity in following and quartering waves, the 
encounter frequency becomes much smaller 
than the natural frequencies in heave and pitch. 
Therefore these motions were estimated by 
simply tracing their stable equilibrium. 
(Matsuda & Umeda, 1997) 
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Figure 7. Coordinate systems. 

As can be seen in Fig.7, two coordinate 
systems are used: (1) a wave fixed with its 
origin at a wave trough, the � axis in the 
direction of wave travel; and (2) an upright 
body fixed with its origin at the centre of ship 
gravity, with the x axis pointing toward the 
bow, the y axis to starboard, and the z axis 
downward.  

Note that henceforth, all vectors are taken 
as column vectors; a row vector can be 
obtained from the column vector, and vice 
versa, by transposition, which is denoted with 
the T superscript. The state vector, x , and 
control vector, b , of this system are defined as 
follows: 
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( )

8
1 2 8( , , , )

/ , , , , , , ,

T

T
G

x x x

u v r pξ λ χ φ δ

= ∈

≡

x RL
 (1) 

( ) 2, T
cn χ≡ ∈b R  (2) 

The dynamical system can be represented 
by the following state equation: 

( ) [ ]1 2 8( ), ( ), , ( ) Tf f f= =x F x;b x;b x;b x;b& L . (3) 

Details of this equation are available in 
Appendix 1. 

 

CL
 

Figure 8. Body plan of the subject ship. 

Based on the above-mentioned 
mathematical model, numerical calculations 
were carried out for a 135GT Japanese purse 
seiner used in the ITTC benchmark testing 
(Umeda & Renilson, 2001) whereas the free-
running model experiment were carried out 
using the ONR tumblehome vessel. The 
principal particulars and body plan are shown 
in Table 2 and Fig.8, respectively.  
Hydrodynamic coefficients and other relating 
parameters can be found in the literature. 
(Umeda & Hashimoto, 2002) 

 
Table 2. Principal particulars of the ship. 
Items Values 
Length: LBP 34.5 m 
Breadth: B 7.60 m 
Depth: D 3.07 m 
Draught at FP: df 2.50 m 
Mean draught:  dm 2.65 m 
Draught at AP: da 2.80 m 
Block coefficient: Cb 0.597 
Metacentric height: GM 1.00 m 
Pitch radius of gyration: κyy/LBP 0.302 
L.C.B. (aft) 1.31 m 
Rudder Area Ratio 1/26.2 
Time constant for steering gear: 
TE 

0.63 s 

Rudder gain: KP 1.0 

Time constant for differential 
control: TD 

0.0 s 

4. PERIODIC SOLUTION 

To examine the subharmonic yaw motion, 
firstly a periodic solution of the system is 
required. Since the system used here is 
autonomous, the period should be dealt with as 
one of unknown parameters. Specifically, 
setting the section Π  which is transverse to 
periodic solution, we can define Poincaré 
mapping by which Π  maps onto its own 
(Kawakami et al., 1978). More details of the 
used method for obtaining a periodic solution 
of an autonomous system can be found in 
Appendix 2. 

Fig.9 shows the comparison of the above 
methodology and a simple numerical 
integration scheme. We can see the asymptotic 
behaviour of trajectory obtained by numerical 
integration toward periodic solution. Therefore 
it can be concluded that numerical accuracy of 
above calculation scheme is guaranteed.  
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Figure 9. An example of the periodic solution 
under / 0.1H λ = , / 1.637Lλ =  and the auto 
pilot course of 10 degrees with 0.3Fn = . 
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5. FLIP BIFURCATION AND CHAOS 

Although the result shown in Fig.9 is a 
stable periodic solution having period equal to 
the encounter period, (1T), a periodic solution 
having different period could appear depending 
on parameters. As it was mentioned above, 
period-doubling phenomenon had been first 
observed by Kan (1982) in model test and 
further identified by Spyrou (1997) as flip 
bifurcation. Therefore analysis of eignvalues of 
a periodic orbit as well as applications of 
Lyapunov exponent seems to be appropriate 
here.  
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Figure 10. Poincaré mapping versus Fn with 

/ 0.1236H λ = ,  λ/L=1.975 and the auto pilot 
course of 10 degrees. 

Fig.10 shows the Poincaré mapping 
according to Eq. (B8). As can be seen, 
trajectory is bifurcated into double period at 
about 0.23Fn = and returned to 1T periodic 
solution at about 0.3Fn = . And Fig.11 
represents one of examples of double period 
solution (2T) obtained by using above 
methodology. 
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Figure 11. An example of the periodic solution 
under / 0.1236H λ = ,  λ/L=1.975  and the auto 
pilot course of 10 degrees with 0.24Fn = . 

In this figure though 1T periodic solution is 
also drawn, taking account of Fig.10, 1T 
solution must be regarded as unstable. To 
theoretically demonstrate the stability of 
periodic solution, i.e. fixed point on Poincaré 
section, we considered following characteristic 
polynomial equation; 

( )[ ]0det 0DT μ− =u I  (4). 

Here it is well-known that if this equation 
has the solution of 1μ = − , then the dynamical 
system has a double period fixed point on 
Poincaré section. 
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Figure 12. Comparison of the characteristic 
values as related to Jacobi matrix of Poincaré 
mapping between Fn of 0.22 and 0.24, with 

/ 0.1236H λ = ,  λ/L=1.975 and the auto pilot 
course of 10 degrees. 

Fig.12 shows the eigenvalue μ  of 1T 
periodic solution, obtained by solving Eq. (4). 
Here the abscissa represents a real part of 
eigenvalues whilst the ordinate does an 
imaginary part of them. From this figure it is 
found that if the bifurcation of fixed point on 
Poincaré section happens, eigenvalue crosses 
the unit circle in complex plane. It clearly 
demonstrates the flip bifurcation. Likewise, it 
can be also confirmed that eigenvalue crosses 
the unit circle in complex plane within Fn of 
0.29 and 0.30, but it is omitted to plot the 
figure for the sake of brevity. And although we 
did not execute further investigation, we can 
sequentially obtain the parameter which arises 
flip bifurcation if we solve the Eqs. (B6), (B8) 
and (4) simultaneously. Then we can 
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sequentially trace Poincaré map by sweeping 
parameter (Kawakami & Katsuta, 1981). 

It is well-known that sequential flip 
bifurcations leads to chaotic phenomenon. 
Fig.13 shows the Poincaré mapping. 
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Figure 13. Poincaré mapping versus / Lλ  with 

/ 0.1325H λ = , 0.28Fn =  and the auto pilot 
course of 11 degrees. 

From this figure it is found that 1T periodic 
solution becomes unstable at the 
neighbourhood of / 1.57Lλ =  and then flip 
bifurcation happens. Fig.14 represents a 
magnified portrait of the Poincaré section. We 
can see that as a result of sequential flip 
bifurcation may lead to the chaotic ship motion. 

1.600 1.605 1.610 1.615 1.620 1.625 1.630
-8.00

-7.75

-7.50

-7.25

-7.00

-6.75

/Lλ

 

 

Y
aw

 (d
eg

.)

 
Figure 14. Partially magnified Poincaré 
mapping versus / Lλ  with / 0.1325H λ = , 

0.28Fn =  and the auto pilot course of 11 
degrees. 

To quantitatively demonstrate it, we 
calculated the maximum Lyapunov exponent. 
Lyapunov exponents describe a way to judge 
whether nearby trajectories converge or diverge 
in the state space of a dynamical system by 
measuring the mean logarithmic growth rate 
(Geist, K. et al., 1990). If maximum Lyapunov 
exponent has a positive value, then trajectory 
has logarithmic instability, i.e. one of 
characteristics of chaos. Fig.15 indicates the 
maximum Lyapunov exponent for the same 
condition to Fig.13. 

 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64

M
ax
im
um

 L
ya
pu
no
v 
ex
po
ne
nt

/ Lλ  
Figure 15. Maximum Lyapunov exponent 
versus / Lλ  with / 0.1325H λ = , 0.28Fn =  
and the auto pilot course of 11 degrees. 

Fig. 15 indicates that the maximum 
Lyapunov exponent changes its sign from 
negative to positive at the wavelength to ship 
length ratio of approximately 1.623. At this 
condition in Fig. 14 we can notice the limit of 
sequential flip bifurcation (Feigenbaum 
cascade). This fact supports that sequential flip 
bifurcations lead to chaos phenomenon 
associated with yaw instability. 

6. OPTIMAL CONTROL THEORY 

Optimal control theory is the theory to 
obtain the control law realizing the minimum 
performance index under state equations, 
constraints and boundary conditions. In our 
past research (Maki et al., 2008A), utilizing the 
optimal control theory for ship motion in 
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following and quartering seas, we obtained the 
rudder control law which minimizes the course 
deviation from autopilot course. Numerical 
calculation technique of optimal control 
problem can be divided into the two, i.e. the 
scheme based on variation method and that 
based on mathematical programming technique. 
In our past research (Maki et al., 2008B) it was 
numerically confirmed that the both techniques 
leads to the same results each other, so that the 
numerical accuracy is fully guaranteed. Hence 
in this research we utilized the mathematical 
programming method as optimization 
technique. And the optimal periodic solution 
seems to be powerful aid for the consideration 
of yaw instability, so that we explain the 
calculation scheme of it as follows. 

First we set the variable 7∈x R  again as 
follows; 

( )/ , , , , , , T
G u v r pξ λ χ φ≡x . (5) 

Then the optimal control problem in this 
research to be considered is stated in the 
following manner: minimize the performance 
index; 

( )2

0

1 ft
c f

f
J dt

t
χ χ≡ −∫  (6) 

subject to the differential constraints, i.e. state 
equation; 

( ) 7, ,Iδ= ∈x F x p;b R& , (7) 

the boundary conditions and non-differential 
constraints; 

( ) ( )0MAX I MAX ft t tδ δ δ− ≤ ≤ < < . (8) 

Where ( )I tδ  and p  are the rudder control 
and the parameter vector, such as final time ft , 
respectively. And MAXδ  has the value of 35 
degrees. In this research we approximately 
consider that the input rudder angle is just 
equivalent to actual rudder angle for the sake of 
brevity, so that the rudder control equation is 
not taken into account.  

As mentioned above, the period of the 
periodic motion associated with autonomous 
system is generally axiomatic. Thus the period 
has to be included among unknown parameters. 
Here taking the Poincaré section as Eq. (B8), 
the boundary conditions of optimal periodic 
solution can be represented as; 

( ) [ ] 7
0 1,0, ,0 T

f Tt n− = ± ∈x x RL . (9) 

Here 0x  denotes the boundary state value at 
one side and integer Tn  does period of ship 
motion. 

The optimal control problem stated above is 
converted to a nonlinear programming problem. 
To transform the control ( )tu  to a set of 
discrete variables, the time interval [ ]0, ft  is 
divided into N segments, being the nodal value 
of the time is denoted by ( )1, 2, , 1it i N= +L . 
Therefore, control variables can be represented 
as a set of discrete values ( )i I itδ δ= . If the 
initial state values are assumed by boundary 
condition 0x , and if the control variables iu  
and final time ft  are specified, the state 
variable can be calculated through the 
numerical integration scheme. As a result, the 
nodal values of the states are written as a 
function with respect to 0x , 

( )1, 2, , 1i i N= +u L  and ft . These 
independent variables are combined into a 
single vector X  as 

[ ]0 1 2 1, , , , , TT
N ftδ δ δ +≡X x L  (10). 

Then the performance index J  and path 
constrains are function with respect to X . 
Therefore, the optimal control problem can be 
formulated in the following nonlinear 
programming problem: 

( )

( )

( ) [ ]

2 2

0

minimize
subject to 0 1, , 1

1,0, ,0
i MAX

T
f T

J
i N

t n

δ δ− ≤ = +

− = ±

X

x x

L

L

, (11) 

where  
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( ) ( )[ ]21
i c

i
J

N
χ χ≡ −∑X X% . (12) 

Here the constrains are imposed at each 
nodal point it . Based on the knowledge of 
mensuration by parts, limitation with respect to 
N yields following relation; 

( )lim
N

J J
→∞

=X% , (13) 

so that Eq. (6) and Eq. (12) are equivalent for 
large N. Notice that periodic condition to 
rudder input is not imposed in above 
formulation. It is because imposing a periodic 
condition on state value at both ends 
simultaneously imposes a periodic condition on 
rudder input. It can be mathematically proved. 
Its proof and detailed explanation about it are 
omitted for the sake of brevity, but it will be 
published in a separate paper. 

In this research the numerical optimization 
using mathematical programming is carried out 
utilizing programming package of sequential 
quadratic programming (SQP) method. And the 
derivatives of performance index are calculated 
by using numerical differentiation whereas it 
can be obtained introducing sensitivity 
differential equation (Tsuchiya & Suzuki, 
1997). 

7. APPLICATION OF OPTIMAL 
CONTROL THEORY 

As it was shown by Spyrou (1997) the 
rational choice of differential gain may 
decrease or even completely exclude yaw 
instability. Therefore choice of the autopilot 
gains becomes a safety factor. Here an attempt 
is made to use optical control theory for this 
choice. Not arguing on importance of 
differential control, the authors have chosen to 
focus on proportional control only as the first 
step. 

Following above formulation, we executed 
the numerical optimisations. Fig.16 shows the 
comparison of the periodic solutions obtained 

by two different proportional controls and 
optimal control. For this wave condition large-
amplitude subharmonic yaw motion is realised 
with proportional gain of 2.0 whereas it is not 
done with proportional gain of 1.0. This result 
corresponds with that shown by Spyrou (1997) 
and Umeda et al. (2008B). In the case of 
proportional gain of 1.0, although amplitude of 
yaw motion is small, mean of yaw angle is 
deviated from desired course due to wave-
induced yaw moment. Hence it is concluded 
that the course-keeping of both proportional 
controls has more or less problematic aspect. 
On the other hand, obtained optimal rudder 
control successfully keeps her desired course 
with relatively small amplitude of yaw motion 
as a Bang-Bang control. Here the state equation 
and performance index which we use in this 
research have linear relation with respect to 
rudder input, so that it can be proved for such 
system that optimal rudder input generally 
becomes Bang-Bang type except for quite 
special case (Maki et al., 2008C). Base on this 
knowledge it is found that the accuracy of 
numerical calculation is fully ensured.  

Figure 16. Comparison of rudder and yaw 
angles as a function of longitudinal ship 
position between the optimal control and two 
different proportional controls with 

/ 1.975Lλ = , / 0.1236H λ = , 0.206Fn =  and 
the auto pilot course of 10 degrees. 

Fig.17 shows the numerical results with the 
condition which leads to the chaotic ship 
motion. 

Since a periodic solution does not exist with 
the condition which leads to the chaotic 

-40

-30

-20

-10

0

10

20

30

40

-6 -5 -4 -3 -2 -1 0

Optimal periodic

Periodic solution (Kp=1.0)

Periodic solution (Kp=2.0)

-40

-30

-20

-10

0

10

20

30

40

-6 -5 -4 -3 -2 -1 0
/Gξ λ/Gξ λ

( )deg.χ ( )deg.δ



10th International Conference 
on Stability of Ships and Ocean Vehicles 

 
 

   

437

oscillation, trajectory with proportional control 
is obtained using simple numerical integration.  

Figure 17. Comparison of rudder and yaw 
angles as a function of longitudinal ship 
position between the optimal control and the 
proportional controls which have different 
period each other, with / 1.6275Lλ = , 

/ 0.1325H λ = , 0.28Fn =  and the auto pilot 
course of 10 degrees. 

From this figure it is founded that large-
amplitude subharmonic yaw motion can be 
completely prevented utilizing the optimal 
rudder control as Bang-Bang control with the 
condition which arises not only subharmonic 
yaw motion but also chaotic ship motion. 
Furthermore optimal 2T trajectory is plotted in 
this figure. However since its tendency 
completely coincides with the result of 1T 
optimal control, it is concluded that an optimal 
2T periodic solution does not locally exist. 
Nonetheless, we cannot reject the possibility of 
existence of the global optimal 2T solution. To 
realize such global optimal solution, generic 
algorithm (GA) (Goldberg, 1989) is applicable. 
It is our future task. 

As mentioned above, it is revealed that 
subhatrmonic yaw motion can be prevented by 
appropriate rudder control, so that this 
knowledge could facilitate to the development 
of autopilot and operational guidance for 
preventing this phenomenon. And validation of 
obtained result through free-running model 
experiment is desirable. 

8. CONCLUDING REMARKS 

Experimental records of subharmonic yaw 
motion were successfully obtained. Then a 
standard bifurcation technique of periodic 
orbits confirmed that the occurrence of this 
phenomenon can be regarded as a flip 
bifurcation. The calculation of Lyapunov 
exponents indicates that this phenomenon 
could result in chaos. Furthermore obtained 
optimal rudder control successfully prevents 
the occurrence of the subharmonic yaw motion 
whilst the proportional autopilot does not. This 
suggests, if this conclusion is widely applicable 
for ships, that this oscillatory broaching could 
be avoided by appropriate operation. Therefore, 
oscillatory yaw instability could be noted in 
physics-based operational guidance but it does 
not have to be included in a design criterion. 
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10. APPENDIX 1 

Following equations represent the each 
component of state equations used in this 
research.  

( ) ( )1 cos sin /f u v cχ χ λ= − −x;b  (A1) 

( ) ( ) ( ) ( )[ ]

( )
2 ; / ,

               /
w G

x

f T u n R u X
m m

ξ λ χ= − +
+

x;b  (A2) 

( ) ( ) ( ) ( )[

( ) ( )

( )] ( )

3 ; ;
               ;
               / , , ; /

x v r

w G y

f m m ur Y u n v Y u n r
Y u Y u n

Y u n m m
φ δφ δ
ξ λ χ

= − + + +
+ +

+

x;b
 (A3) 

( )4f r=x;b  (A4) 
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( ) ( ) ( ) ( )[

( ) ( )]

( )

5 ; ;
               ; / , , ;
               /

v r

w G

ZZ ZZ

f N u n v N u n r N u
N u n N u n
I J

φ

δ

φ
δ ξ λ χ

= + +
+ +

+

x;b
 (A5) 

( )6f p=x;b  (A6) 

( ) ( ) ( )[

( ) ( ) ( )

( ) ( )]

( )

7 ; ;
               ;
               / , , ;
               /

x H v r

P

w G

xx xx

f m z ur K u n v K u n r
K u p K u K u n
K u n mgGZ
I J

φ δφ δ
ξ λ χ φ

= + +
+ + +
+ +

+

x;b

 (A7) 

( ) ( )[ ]8 /R C R D Ef K K T r Tδ χ χ= − − − −x;b  (A8) 

11. APPENDIX 2 

In the following we describe this scheme 
and calculate a periodic attractor. Let a solution 
of Eq. (3), i.e. the trajectory, as the following 
form; 

( ) ( ) 8
0 0; ,t t t= ∈x ш x R  (B1) 

Here we take a local cross section Π ; 

( ){ }8 80, :g gΠ = ∈ = →x R x R R  (B2). 

Where ( ) 0g =x  represents the 7-
dimensional hypersurface describing the 
Poincaré section Π . The hyper surface Π  need 
not be planer, but must be chosen so that the 
flow is everywhere transverse to it. And set a 
local ordinate; 

7:h Π → Σ ⊂ R  (B3). 

Denote the points where trajectory 
transversally intersects Σ  by; 

0 1, ,x x L  

and define its Poincaré mapping onto Σ ; 

( ) ( )0 0 1 1, ,h h= =x u x u L  

Let the trajectory which has the initial value 
( )1

0 0h− =u x  at 0t t=  intersects Π  at 1x  and 
let its time ( )0 0t t τ= + x , as follows; 

( ) ( )( )( )1
1 0 0 0 0; ,t t h tτ −= +x ш u x . (B4) 

Here we take the map T  by which Σ  maps 
onto its own as follows; 

( )( ) ( )( )( )
0 1

1 1
0 0 0 0

: ;
; ,

T
h t h t hτ − −

Σ → Σ

= +

u u
ш u u

a
. (B5) 

Then a periodic solution must satisfy 
following relation; 

( )0 0T =u u . (B6) 

And also following relation must be 
satisfied; 

( ) 0g =x  (B7) 

Hence it is required to simultaneously solve 
Eq. (17) and Eq. (18) with respect to 0u  and τ  
by Newton method. In this research we take 
Poincaré section as; 

( ) [ ]/ /G Gg ξ λ ξ λ ν≡ − −x  (B8) 

Here ν  represents the constant within the 
set of )[0,1 , and [ ]L  means floor function. In 
this paper we set ν  of zero and all the 
derivatives existed in Newton iteration was 
obtained using numerical differentiation. 
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13. NOMENCLATURE 
 
c  wave celerity 
Fn  nominal Froude number 
g  gravitational acceleration 
GZ   righting arm 
H  wave height 

xxI  moment of inertia in roll 
zzI  moment of inertia in yaw 
xxJ  added moment of inertia in roll 
zzJ  added moment of inertia in yaw 
pK  derivative of roll moment with respect 

to roll rate 
PK  rudder gain 
rK  derivative of roll moment with respect 

to yaw rate 
TK  thrust coefficient of propeller 
vK  derivative of roll moment with respect 

to sway velocity 
wK  wave-induced roll moment 

Kδ  derivative of roll moment with respect 
to rudder angle 

Kφ  derivative of roll moment with respect 
to roll angle 

L   ship length between perpendiculars 
m  ship mass 

xm  added mass in surge 
ym  added mass in sway 

n   propeller revolution number 
rN   derivative of yaw moment with respect 

to yaw rate 
vN  derivative of yaw moment with respect 

to sway velocity 
wN   wave-induced yaw rate 

Nδ   derivative of yaw moment with respect 
to rudder angle 

Nφ   derivative of yaw moment with respect 
to roll angle 

p  roll rate 
r   yaw rate 
R   ship resistance 
t   time 
T   propeller thrust 

DT   time constant for differential control 
ET   time constant for steering gear 

u   surge velocity 
v   sway velocity 

wX   wave-induced surge force 
rY   derivative of sway force with respect to 

yaw rate 
vY   derivative of sway force with respect to 

sway velocity 
wY   wave-induced sway force 

Yδ   derivative of sway force with respect to 
rudder angle 

Yφ   derivative of sway force with respect to 
roll angle 

Hz   vertical position of centre of sway force 
due to lateral motions 

δ   rudder angle 
λ   wave length 

Gξ   longitudinal position of centre of 
gravity 

φ   roll angle 
χ   heading angle from wave direction 

cχ   desired heading angle for auto pilot 
 


