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ABSTRACT

Practical implementation of the second generation of IMO intact stability criteria is not possible
without formulation of clear requirements for numerical or other computational methods. Probably,
the highest priority should be given to the second-level vulnerability criteria. The first-level is
simple enough and, as such, requirements may not be needed or will be obvious based on standard
naval architectural practices. While scientifically mature, the application of numerical methods in
the second-level may be more difficult as not all of these methods are familiar to practicing naval
architects including those employed with administrations and classification societies. This paper
focuses on requirements for use of the numerical method for the second-level vulnerability criteria
for the parametric roll stability failure mode. Criteria for other modes of stability failure may have
similar concerns. Use of a numerical solution of differential equations may be a good way to
compute nonlinear ship motions. However, to ensure consistency of its application (i.e, results are
reliably repeatable for the same ship in the same condition), all necessary parameters (such as the
time increment, the number of steps, the initial conditions, etc.) must be explicitly defined. Further,
special attention needs to be given to a ship response on very large waves, for which special
procedures may be needed. Since the differential equation is nonlinear, the response to a very large
excitation may be chaotic. Also, if capsized equilibrium is not modeled, special measures must be
taken to prevent run-time related to a very large, unrealistic roll response.
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1. INTRODUCTION e Stability under dead ship condition, as

defined by SOLAS regulation I1-1/3-8; and

The development of the second generation o Maneuvering related problems in waves,
IMO intact stability criteria has been an intense such as broaching-to;

multi-year effort. Recognizing the fact that
stability failure may be caused by different
physical mechanisms, different modes of
stability failure are explicitly considered in the
new criteria:

e Excessive accelerations (SLF 53/19,
paragraph 3.28).

This development was partially motivated
. o by the appearance of novel hull forms that
* Restoring arm variation problems, such as renewed interest in dynamic stability, (see e.g.

parametric excitation and pure loss of  France, er al. 2003). As a result, the emphasis
stability; was made on adequate reflection of physics,
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making new criteria based on performance
(Belenky, et al 2008). This means that the
assessment is based on hull geometry and
physics of stability failure rather than past
experience with similar ships.

The multi-tiered structure of new criteria
addresses the potential complexity of the
application of the new criteria. The first-level
vulnerability check is very simple and quick,
but conservative. If vulnerability to a particular
stability failure mode is determined not to
occur, no further assessments are needed. If
not, then a more detailed, but less conservative
analysis follows, which is the second-level
vulnerability assessment.

The IMO Sub-committee on Ship Design
and Construction, at its 2" Session, finalized
the first three elements of the criteria:

e Draft Amendments to Part B of The 2008
IS Code with Regard to Vulnerability
Criteria of Levels 1 And 2 for the Pure
Loss of Stability Failure Mode (Annex 1 of
SDC 2/WP.4);,

e Draft Amendments to Part B of The 2008
IS Code with Regard to Vulnerability
Criteria of Levels 1 And 2 for the
Parametric Rolling Failure Mode (Annex 2
of SDC 2/WP.4);

e Draft Amendments to Part B of The 2008
IS Code with Regard to Vulnerability
Criteria of Levels 1 And 2 for the Surf-
Riding / Broaching Failure Mode (Annex 3
of SDC 2/WP.4).

These documents describe the criteria,
standards and contain general requirements for
the calculation methods. The explanatory notes
are expected to be developed to ensure uniform
interpretations and application of the new
criteria. The technical background of these
criteria is described in Peters, et. al. (2011). A
significant amount of information is being
prepared for the explanatory notes, see SLF
53/3/3, Annexes 17, 19, 33, 34 of SDC
2/INF.10, Sections 2.1, 3.1 and 4.1 of Belenky,
et al. (2011) and Peters, et al. (2014). The
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particular objective of this paper is to
contribute towards the explanatory notes for
second-level vulnerability assessment of the
parametric roll stability failure mode.

2. MAXIMUM ROLL ANGLE

The second check for the second-level
vulnerability criteria requires calculation of the
maximum roll angle resulting from parametric
roll. This calculation, while not too complex, is
beyond the scope of traditional naval
architectural calculations; why?

The conventional way to evaluate ship
motions is with the use of Response Amplitude
Operators (RAO). The RAO expresses
dynamic properties of a ship. Its values are the
characteristics of motions, multiplied by the
values of sea spectrum and summed up to yield
the characteristics of motion. RAO is an
element or a form of a solution to the linear
ship motion equation in waves.

The term “linear ship motion equation”
means that the equation assumes that the
motions are small and that non-linear parts of
the full ship motion equation can be ignored
because their effects are negligible (often
because the waves are significantly longer than
the ship). In particular, GM, which
characterizes transverse stability, is used to
represent roll stiffness. Indeed, stability at large
roll angles cannot be characterized with GM
alone.

The maximum angle of parametric roll also
cannot be found just with GM even if its
variation in waves is known. However, the
responsibility for progressively growing roll
angles, i.e. parametric roll, is associated with
these GM variations together with a frequency
ratio in which the encounter frequency is close
to twice that of natural frequency (see e.g. SLF
54/3/3).

Once parametric roll motion starts, it grows
to a certain maximum angle and the motion
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repeats (i.e., it remains stable). This occurs
because the GZ curve is not a straight line over
the range of roll motion. As a result, the natural
roll frequency changes with the increase of the
roll angle (the instantaneous GM value also
changes). Changing the roll frequency sooner
or later will break the parametric roll condition
because the supply of energy into roll motion
will be stopped. The maximum roll angle is
achieved during steady state parametric roll.

Thus, a large portion of the GZ curve is
needed to find the maximum roll angle. While
the GZ curve is known, the motion equation is
no longer linear if GZ is included and a RAO-
type of solution is no longer possible.

3. EQUATION OF MOTION

3.1 Overview of Forces Acting on a Ship

The equation of motion takes into account
forces acting on the ship. The simplest
mathematical model that is capable of
evaluating the maximum roll angle includes
four moments:

Inertia, including added inertia (or added
mass) as a part of hydrodynamic forces;

Roll damping, which expresses energy loss
from roll motions in creating waves,
vortexes and skin friction;

Roll restoring (stiffness) is modeled with
the calm water GZ curve; the variation of
stability in waves is included by GM
represented with a sine function.

Transverse wave forces are absent for a
ship in exact following or head long-crested
seas

3.2 Roll Inertia

The roll inertia of a ship as a solid body is
measured by the transversal moment of inertia.
In absence of ship specific data, it is
recommended to assume the radius of gyration
7 as 40% of the molded breadth, B:
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r.=04B (1)
Then, the moment of inertia, /,, is calculated as:
I, =pVr] )

where p is the mass density of salt water; V is
the volume of displacement. Use of other
approximation formulae may be helpful but
only if the limits of their applicability are well
known.

Inertial  forces are proportional to
accelerations. There are also hydrodynamic
forces acting on a ship subject to accelerated
motion that are also proportional to the
accelerations. These hydrodynamic forces are
usually expressed as an additional mass or a
moment of inertia and referred as “added mass”.
Again, in the absence of ship specific data, one
can assume that the added mass in roll, A44, as:

A, =0.251 4)
Finally, the roll inertia is expressed as:
M1N=(Ix+A44)'W¢ (5)

where Wy is the angular acceleration in roll.

3.3 Roll Damping

Damping of roll motions is essentially a
transfer of kinetic energy of a moving ship to
the environment. It is a complex process,
because this energy transfer occurs through
different physical phenomena. Skin friction
causes the layers of water nearest to the hull to
move. The moving surface of the hull leads to
formation of vortexes; the kinetic energy of the
water moving in those vortexes is taken from
the ship. Due to its motion, the ship also makes
waves on the surface that also dissipate energy.
The complexity of these physical phenomena is
the reason why a model test is the most reliable
source of information on roll damping.
However, recent developments in
computational fluid dynamics (CFD) holds
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good promise for the availability of this
computational method in the future.

In the absence of ship-specific or prototype
data, the simplified Ikeda method can be
recommended (Annex 3, SDC 1/INF.8). A
moment of roll damping is presented in the
following form:

M, =(1, +4,)- (67, +87}) (6)

where &, and 93 are coefficients computed with
simplified Ikeda method and V is the angular
velocity of roll motions.

The simplified Tkeda method contains some
empirical elements and, for this reason, the
range of its applicability should be observed.

3.4 Roll Restoring

A proper representation of roll restoring is
very important for the correct representation of
parametric roll. The variation of stability in
waves is a primary mechanism of development
of parametric roll (an explanation is provide in
SLF 54/3/3). The calculation of the
instantaneous roll restoring, while straight
forward, may be too complex for the level-two
vulnerability check. (See the description of one
of the simplest algorithms of direct calculation
in Weems and Belenky, 2015). Hence, a quasi-
static approach can be used instead.

The quasi-static approach means that the
GZ curve for the ship on a wave is calculated
using the “conventional” static algorithm (in
which forces and moments are balanced in
heave and pitch as required in Annex 2 of SDC
2/ WP.2 ), but the waterplane is not flat — it is
determined from the intersection of a wave and
the hull surface. Known also as “wave-pass”
calculations, the capability for this calculation
is provided by a number of commercially
available hydrostatic software packages (see
Figures 1 and 2). For the assessment of
parametric roll, calculation of the GZ curve up
to 180 degrees is recommended; it sets a
natural maximum and prevents the numerical
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solution from growing too large and cause a
numerical error.

Figures 1 shows the GZ variation in waves
as a series of curves. Each curve is calculated
for a particular position of the wave crest
relative to the midship which results in a
surface shown in Figure 2. For the intermediate
values of heel angle and of the wave crest
position, a bilinear or bi-cubic spline
interpolation can be used. The definition of
wave crest position is illustrated in Figure 3.

STGZ, m

P %E\

Heel, de
0.5 R
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GZ, m

| ~ ‘ ‘
. | Heel, deg
0 20 40 0 100 120 140 160 A80
2 \

Figure 1: The GZ curve in waves (steepness
0.02, C11 class containership, full load) (a)
positive range, (b) full range
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Position of the wave
crest relative to the
midship section

Figure 2: The GZ curve in waves as a surface
(steepness 0.02, CI1 class containership, full
load)
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Position of the wave crest relative to midship, m

Figure 3: Definition of the position of the wave
crest relative to the midship section

The position of the wave crest is a function
of time:
X () =0.5)sin(w ) (7)
where A is the length of the wave and «, is the
wave frequency of encounter:

2
®
0, =0———V;cosf

(8)

where g is the gravity acceleration, [3 is the
relative wave heading (0 degrees — following
waves, 180 deg — head waves), and Vs is the
forward speed in m/s. Thus, the value of the
GZ curve in waves can be presented as a
function of time and angle of heel, ¢:
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GZ =GZ(t,9) 9)

If, for some reason, the calculation software
1s not available, the GZ curve in a wave can be
approximated using only the GM value that
may be already available from the Level 1
vulnerability check. Indeed, as required by
Annex 2 SDC 2/WP.2, the calculation of GM
must be done with forces and moments
balanced in heave and pitch. An example of the
GM variation is shown in Figure 4:

Then, the GZ in waves may be
approximated by the calm-water GZ
“modulated” by the GM in waves

GM (¢)
GZ(t,0)= GZ 10
(. 9) GM, 0(9) (10)
3TGM, m —
21 /
150 100 -50 0 50 100 150

Position of the wave crest relative to midship, m

Figure 4. The GM value in waves as a function
of wave crest position relative to midship

(wave steepness 0.02, C11 class containership,
full load)

Assuming that the GZ curve is symmetric,
the total restoring moment is expressed as:

M, =sign(9)-pVg-GZ(1,| )

, 1 $>0
s1gn(<1>>={_1 o0

an

3.5 Equation of Motion and Its Solution

Following Newton’s second law, the
equation of roll motion is expressed as the
inertial force equal to the sum of all other
forces. Since the ship is in longitudinal waves,
there is negligible or no direct forcing that
comes from the waves:
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My =-M,-M, (12)
In equation (12), the negative sign is inserted
because both damping and restoring forces are
directed against the roll motion or the rate of
motion. The equation of roll motion can be re-
written with each force as a function of motion
parameters or time:

MIN(W¢)+MD(V¢)+MR(t9¢):0 (13)

Equation (13) relates the roll motion with
the roll rate and the angular roll acceleration.
These  quantities are related through
differentiation: the angular velocity is a
derivative of roll and the angular acceleration is
a derivative of angular velocity. Thus, equation
(13) is a differential equation.

The solution of a differential equation (13)
is a time history of roll motions, similar to that
shown in Figure 5.

4079, deg

20 /\ N N in A Non g

|
il

vy U /I

-20

-40
Figure 5 Time history of parametric roll

Figure 5, indeed, shows parametric roll. As
the ship is sailing in longitudinal waves, there
is no forcing in the transversal plane, so the
observed rolling motion is a result of
parametric resonance.

The equation (13) is solved by a standard
program available from most numerical or
engineering software packages. Numerical
solvers of differential equation also are
available in MS Excel in Visual Basic. To use
the solver, the equation (13) must be presented
in a form of a vector-valued function:
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)

(14)
L ("

Iy +A44 _MD(V¢)_MR(t>¢)

Besides the vector-valued function (14), the
solver requires initial conditions, i.e. values of
roll angle and roll rate at the beginning (or at
time step ¢ 0) of the calculations. The
solution, as illustrated in Figure 5, was
computed with assumed initial conditions (¢ =
5 deg and V= 0 deg/s). While the calculation
can assume zero for both ¢ and Vy, the
development of parametric roll may not occur
until a much longer duration is calculated.

To complete the inputs necessary for the
calculation, two more parameters are needed:
the time increment Af and the total number of
points N. These parameters can be related to
the natural frequency of roll, wo, in calm water
because a steady state parametric roll motion in
longitudinal waves occurs with this frequency:

o = pVg-GM, (15)
I, +4,

0

Then, the period of the roll motion in calm
water is expressed as:

_2n

I (16)

Wy

The time increment Az can be expressed in
terms of the number of points per period N,

T
At =—2

(17)

prp

Thus, the number of points depends on the
number of periods N,., to be reproduced:

N=N N

ppp- - per

(18)

Practical experience recommends use of the
following values:
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N

ppp

N

per

=15

30;

3.6 Calculation of Maximum Roll Angle

The parametric roll response has a
transition from the state where the initial
conditions still have an influence to the steady
state where the amplitudes are similar or close
to each other.

Different criteria for "closeness" can be
used: relative (the difference is less than 3 -
5%) or absolute (say, less than one degree).
Following this criteria, the steady state portion
of the response can be extracted (see Figure 6)
and the resultant maximum roll angle can be
found as an average of steady state roll
amplitudes.

400, deg
20

-20.

2
yéo 480 500 520 540 /
|

-40

Figure 6 Steady-state portion of the roll motion
in parametric resonance conditions

The steady state parametric roll is not the
only possible type. If parametric roll is not
possible for the given wave conditions, the
response is represented by decaying roll
oscillations — as shown in Figure 7. Indeed, the
maximum roll angle here is the initial roll angle
of 5 degrees. The response is not expected to
look like a decaying sine function because of
both the parametric excitation and nonlinearity
of the equation (13).

I

A/\ ANAW/aY
\/\/Ad@’\/\lo&/\/\zoé/ 400

500

Figure 7 Roll response in absence of parametric
roll
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Another possible response may include
"capsizing" (see Figure 8) if the GZ curve was
computed for the entire range of 180 degrees
(like in Figure 1). If the GZ curve is computed
only for the positive stability range (GZ > 0),
the calculation must be explicitly stopped once
the roll angle exceeds the angle of vanishing
stability.

2007 ¢, deg I

100 /

A
0 100 7\ 200 300 400 500

-100L ‘ ‘

Figure 8 Roll response with parametric roll and
capsizing

The mathematical model (13) is, probably,
too simple to model actual capsizing, but the
response, similar to that shown in Figure 8,
indeed indicates a condition of strong
parametric roll in which the maximum roll
angle exceeds the standard level of 25 degrees
as stipulated in Annex 2 of SDC 2/WP.4.

In rare cases, the user may observe response
that does not stabilize. The roll amplitude may
grow steadily or look like roll in irregular
waves. These responses are not the result of an
error, but of a known type of nonlinear
behavior. In this case, the maximum achieved
roll angle during N, periods is used.

CALCULATION OF PARAMETRIC
ROLL AMPLITUDE FOR A POST-
PANAMAX CONTAINER SHIP

An example of a calculation of parametric
roll amplitude, in compliance with the Level 2
criteria, is presented below. The investigated
ship is a baby post-Panamax container ship
with the characteristics as shown in Table 1:

Table 1: Main ship characteristics

Length Lgp (m) 238.35
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Beam (m) 37.3
Depth (m) 19.6
Mean Draught (m) 11.5
Block Coefficient 0.657
GM (m) 0.84

The steady amplitude of parametric roll is
calculated by using the following four
methods:

a) a direct numerical solution of the non-
linear differential equation of roll that is
included in SDC 2/INF.10, Annex 17;

a numerical solution of the algebraic
equation derived after applying the
analytical method of averaging on the
previous non-linear differential equation.
(This algebraic equation is proposed in
SDC 2/INF.10, Annex 17 to be used for
obtaining the steady amplitude of
parametric roll.)

a numerical solution of the non-linear
roll equation used by Spyrou (2005); and
an analytical, closed-form, formula
obtained by the method of harmonic
balance, predicting the steady amplitude
of parametric roll at principal resonance
condition (Spyrou 2005).

b)

d)

The moment of inertia, /,, and natural roll
period T) are calculated through the roll radius
of gyration by using Kato’s formula, as
proposed in SDC 2/INF.10-Annex 11. For the
loading  condition under investigation,
To =39.3 s is assumed.

The linear damping coefficient is calculated
by using Ikeda’s method as proposed in the
above IMO document, including the bilge keel
component. While acknowledging that the
criterion requires both linear and non-linear
damping, at this stage, the comparison involves
only linear damping.

The four methods use the same inertia and
damping terms. Their main differences lie in
the representation of the restoring terms. The
SDC model (methods a and b above) is in the
following form:
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I,0+B,0+mgGZ=0 (19)

GZ =GM,p+1,4° +1:4° +GZ, (20)

2
¢z, =GM,,,0+GM,, cos coet{l - (E) }d)
n

where I, is roll moment of inertia including
added moment of inertia; Ba4 is linear damping
coefficient; m is the ship’s displacement; g is
gravitational acceleration; /5, /s are third and
fifth order coefficients of GZ curve fit; o, is the
encounter frequency; GM,y,, 1s half the
difference  between the maximum and
minimum value of GM on the span of a wave;
GM, is the initial metacentric height in calm
water. GM,..., 1s the mean of metacentric
height variation on the span of the wave which,
given the expressions in equation (20), and is
interpreted to be the difference between the
mean value of the GM in waves and the GM in
calm water.

On the other hand, methods c¢) and d)
(above) from Spyrou (2005) model parametric
roll as follows:

O+ 20w, + wi[1—hcos(w,1)]o

213 245 (21)
— G —cs0y9” =0
where ( is the damping ratio, wy is roll natural

frequency, c¢3 c¢s are third and fifth order
restoring coefficients and 7 = GM ypy/GMpean.

The two differential equations for
parametric roll, equations (19) and (21), are not
identical and, therefore, the solutions are not
expected to replicate on each other completely.

Roll amplitude is calculated for ten
different cases where the ship is under the
effect of following waves with A = Lgp and ten
different heights with /; = 0.01jL, where j = 1,
2,..., 10, as requested in SDC 2/INF.10, Annex
17. This leads to waves some of which are
extremely steep and with extremely low
probabilities of encounter. For each wave
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height, hydrostatic calculations of GM,e., and
GM . are carried out by using the well-known
commercial software MAXSURF. The ratio of
the calculated GM,p, t0 GM,pean, together with
the corresponding wave heights, are shown in
Table 2.

The encounter frequency for the ship when
sailing in following waves of length equal to
the ship length and with the design speed of 21
knots is 0.224 rad/s. This leads to a frequency
index a =4} /@’ =2.04, which is far to the
right of the principal resonance value a=1.
The analytical manipulations that have been
applied in the context of SDC and related
literature on the parametric roll differential
equation assume a condition very near to exact
principal resonance. This may lead sometimes
to questionable results if the detuning is large.
Because the wave length is fixed to ship length,
this discrepancy (i.e., a large difference
between the frequency index and the principal
resonance value) is quite likely to be present
whenever a large ship is tested.

Table 2: Wave Height, Probability of
Occurrence, and Ratio of GM,,,, to GMean

Wave Length /=238.35m
Wave GM
N | Height =2~ | Probability W
H(Il’l) GMmean
1 2.384 0.703 0.2367
2 4.767 1.155 0.1196
3 7.151 1.422 0.0336
4 9.534 1.571 0.006146
5] 11.918 1.624 0.0009333
6 14.3 1.632 0.0001025
7| 16.685 1.656 0
8 | 19.068 1.673 0
9| 21452 1.737 0
10 | 23.835 1.815 0

As said in SDC 2/INF.10, Annex 11, the
roll amplitude is calculated by a numerical
solution of an algebraic equation deduced
through the averaging method. This equation is
repeated below for linear damping only:
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8t m,0 64> -81° GM,

Q2n’ —Az)méj +(4(712—/12) GM,
8n° —5n° Al — 61 A°L,
A(n* — A4%)

(%)
where A is the roll amplitude and « is the linear
damping term. Because the analytical solution
of equation (22) is not provided in
SDC 2/INF.10, Annex 17, the implementation
of a numerical scheme to determine the
solution cannot be avoided. However, since
(22) is nonlinear with respect to amplitude 4,
more than one solution can exist. Therefore,
guidance is required on the process of how to
ensure that a solution identified is the correct
one for use in the criterion. In general, a
numerical calculation performed directly on the
differential equation (19), which produces
automatically a stable solution, is in many
respects preferable to a calculation performed

on the averaged form of equation (22), which
produces also unstable solutions.

|

(22)

GM,,,
GM,

8.
+ 2 2 2
4(n” - Ao,

For completeness, the steady roll amplitude
of the analytical solution of Spyrou (2005) is
given in equation (23) also:

2
36 ] 3
5¢; |\ 3¢,
05 (23)
2 2
LN DR PP O
Sc¢g| a 4 oo

where £ is a linear damping coefficient and
a =40,/

In Figure 9, the results obtained by each
method, for the ten different wave heights
discussed earlier, are shown. As each wave
height corresponds to a specific value of
GM uymp/GM pean, this ratio is selected for the
horizontal axis. The numerical simulations are
initiated from an assumed roll angle of 0.01 rad
(0.57 degrees).
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Figure 9: Parametric Rolling Amplitude for ten
different wave heights

According to the analytical solution curve
appearing in Figure 9, there are two possible
responses by the ship: either a stable parametric
resonance (continuous curve), similar to what
was shown in Figure 6; or a decaying rolling
that eventually leads to the upright position (as
shown in Figure 7). Unstable solutions
represented by the dashed curve cannot be
physically realized. Nevertheless, they play the
role of establishing a boundary between the
coexisting solutions of zero and finite
amplitude.

Figure 9 shows that all methods calculate a
roll amplitude either close to the curve of
parametric resonance or to the x-axis of
decaying rolling. The numerical solutions of
equation (19) for roll amplitude grow to
infinity for the greater values of wave height
which can be interpreted as a capsize event in
mathematical terms.

When the solutions of parametric resonance
and decaying roll coexist, the SDC method that
uses equation (19) gives conflicting results.
Also, the wvalue of the parameter
GMamp/GMpean, after which only parametric
resonance occurs, is different for each method.
These inconsistencies may lead to important
differences between the index values of the
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second-level vulnerability check for parametric
roll.

For greater values of wave height (and
subsequently of the parameter GM .,/ GM,can),
the response becomes highly non-linear. One
such example is shown in Figure 10 which
corresponds to the numerical solution of
equation (21) for H =21.45m.

15
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X ] ||Iu||r k’\j f\JI IV\JI '.ﬁul In \f
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Figure 10: Highly non-linear parametric roll
response

According to Figure 10, steady parametric
rolling with very large amplitude (about 50
degrees) occurs. This essentially means that
capsize is highly likely although the solution
remains theoretically bounded. On the other
hand, equation (19) for the same wave height
detects capsizing, as can be seen from Figure
11. While the standard level of 25 degrees as
stipulated in Annex 2 of SDC 2/WP.4 is
exceeded in both cases, same order roll
equations with similar terms show different
dynamic characteristics for large waves.

1
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Figure 11: Non-linear parametric rolling that
leads to capsize (19)
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5. CONCLUSIONS

The second generation intact stability
criteria presents new approaches for the
assessment of ship stability failure. To perform
these assessments, calculation methods are
used that are not commonly used by practicing
naval architects.

The equation of roll motion for the second
check in the second-level of vulnerability
criteria for parametric rolling is a differential
equation. While the form of this equation may
not be the same (see equations (19) and (21)
above), a reliable solution of each requires a
process to be followed if the solutions are to be
replicated. The results show that such reliable
solutions can be determined provided that the
boundaries of application are respected.
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