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     The roll motion for a ship in a transverse sea can be represented by a one degree of freedom model. 
Equations are derived to write analitycally the probability density function of roll angle, roll speed and 
roll excitation moment. Also a capsize cirterium is shown to have a whole process for a capsize 
probability calculation.

 roll motion, capsizing, Fokker-Planck-Kolmogorov equation, characteristic method.

Ship stability is one of nowadays worries. The 
old criteria that were de ned in the rst part of the 
20th century are based on static sta-bility. The new 
generation of criteria should be based on 
dynamical stability. These criteria are not simple 
evaluation but should be also quan-ti cation of the 
risks for a ship on any sea.

All ships are different but their behaviours on 
sea could be modelled with the same type of 
equations. Here the problem is limited to a ship 
sailing in transverse sea. It is assumed that in this 
case, roll motion could be represented by a one 
degree of freedom (1-DOF) model. So the goal of 
the paper is to solve the Fokker-Plank-

Kolmogorov equation (FPK) associated to the 
dynamical problem and to obtain the probabil-ity 
density function of the three following vari-
ables: roll angle, roll speed and roll excitation. 
The solution obtained has been tested on realis-tic 
situation. A capsize criterium is also added to 
have a full way to obtain a capsize probability.

Several methods have already been suggested to 
estimate large roll angles and stability fail-ures. 
The Peak Over Threshold Method (Mc-Taggart 
2000) and Envelope Peak Over Thresh-old Method 
(Belenky & Campbell 2011) use statistical 
extrapolation on relatively small am-plitudes to 

nd the largest motions probabil-ity (Campbell 
2014). The extrapolation tech-nique is also a real 
issue for roll motion proba-bility. One way is the 
split-time method. The split-time method divides 
the problem in two
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parts considering the ship behavior is different 
whether the roll angle is below or above a given 
threshold. The idea is to t only the largest an-gles 
distribution (Belenky, 2014) and could be 
applicated for both Peak Over Threshold and 
Envelope Peak Over Threshold methods.

Melnikov methods have also been largely dis-
cussed in the 1990s and in the 2000s (Hsieh et al. 
1994, Scolan, 1997, Jiang et al. 2000, McCue & 
Troesch 2005). Melnikov methods can deter-mine 
properly whether a sea state is dangerous or not. 
Markov methods use the dynamics of the system to 

nd the complete expression of the roll motion 
probability by solving an FPK. The present paper 
uses one of these methods.

The aim of this group of methods is to con-
sider roll motion as a Markovian process. In 
their paper Roberts and Vasta (Roberts & Vasta 
2000) describe the time evolution of the energy 
of roll motion with a white noise as system per-
turbation.

More recent methods preserve the roll mo-tion 
equation and consider the perturbation as a ltered 
Gaussian white noise according to Spanos ARMA 

lters theory (Spanos 1983). This method was 
applied to uncoupled roll mo-tion by Francescutto 
and Naito (Francescutto & Naito 2004) and the 
method was fully developed by Su and Falzarano 
(Su & Falzarano 2011). This method overcomes 
the difficulty to deal with a noise which does not 
have any remark-able property. On the other hand 
the system becomes larger and new variables 
appear with-out any physical sense. By using this 
method,

the FPK of the complete system for both old and 
new variables can be obtained. These previous 
authors derive numerically the equation.

In the present paper the FPK is derived an-
alytically. This derivation needs in return some 
simpli cation of dynamics.

Consider the following adimensioned roll mo-
tion equation:

(1)

where:

•  is the roll angle,

• t is the time,

• y means the time derivative of the quantity y,

• 1 is the linear damping coefficient,

• 2 is the quadratic damping coefficient,

• c is the restoring moment,

• f is the external random moment.

The equation (1) is the expression of the prin-
ciple of dynamics applied to roll motion. To obtain 
(1), all the moments where divided by Ixx 0

2, where 
Ixx is the total inertia in roll of the ship and 0 is the 
natural roll frequency of the ship.

φ̇|φ̇φ̈+ λ1φ̇+ λ2 |+ c(φ) = f(t),
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The term f is supposed to be a ltered white 
noise. The considered lter is de ned by the 
following equation:

Z̈ + V1Z + V0Z = W, (2)

where V1, V0,  are constant. W is a Gaussian 
white noise. so it leads to the following system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x 1 = x2,
x 2 = 1x2  2x2|x2|  c(x1) + x3, 
x 3 = x4,
x 4 = V1x4  V0x3 + W.

(3)

In (3), we have:

φ̇

•  = x1,

•   =x2,

• f = x3.

The system (3) is rewritten with vectors:

Ẋ = F(X) + GW. (4)

This can lead to the Fokker-Planck-
Kolmogorov equation:

tP = ∇.(P F) +
2

2 x4P, (5)

where P is the probability density function of 
the random variable X.

Remark: According to (Francescutto & Naito 
2004), a 4th order- lter at least should be ap-plied. 
The present lter has a smaller order lter only to 
write an analytical formula for P . Here is one 
simpli cation to get the formula.

To integrate (5), it was chosen to take the space 
Fourier transform of this equation. Be-cause F2 (F2 
= 1x2  2x2|x2|  c(x1) + x3) Fourier transform 
has no analytical expression, new hypotheses 
should be made:

• linearization around equilibrium c(x1) = ci(x1 
 xeq),

• damping linearization, 2 = 0,

where ci is the restoring coefficient around a con-
sidered point of equilibrium xeq, xeq is de ned by 
c(xeq) = 0. Here it is chosen to derive (5) assuming 
the hypotheses. It is assumed a boat has three heel 
angles of equilibrium on each side:  = 0,  = ± V , 

 = ± . Choosing a lineariza-tion around these 
points is considering c(x1) as a 5th order polynom. 
The form of c is given by (6):

c(x1) = Cx1(x2
1  2

V )(x
2
1  2). (6)

This method is equivalent to the piece-wise 
linearization method (Belenky 1993). The dif-
ference is: in the present method the roll mo-
tion is supposed to be fully forced by the exter-
nal moment, whereas in (Belenky 1993) the roll 
angle is considered as a solution of (1). Using 
that method, a transition solution calculated by 
considering f = 0 should be taken into account.

The Fourier transform of (5) is:

tP̂ =
(

ci 2 1 + ( 1  1 2) 2

+ ( 2  V0 4) 3

+ ( 3  V1 4) 4

)
P̂ +

2

2 4
2P̂ (7)

The equation (7) is a transport equation. So if we 
know an integrable solution P̂0( 1, 2, 3, 4) at t = 
0, there exists an integrable solu-tion P̂(t, 1, 2, 3, 

4) = P̂t( 1, 2, 3, 4) with the same measure at 
every t > 0. Fourier transform make this property 
true for P solution of (5). Here to obtain (7) P̂ has 
been supposed square-integrable. So P is square-
integrable.

A method of characteristics is ap-
plied: characteristic curves are curves
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s  (t(s), 1(s), 2(s), 3(s), 4(s)) who check the 
following condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dt
ds

= 1,

d 1

ds
= ci 2,

d 2

ds
= 1 2  1,

d 3

ds
= V0 4  2,

d 4

ds
= V1 4  3.

(8)

So t = s and

⎜⎜⎝
⎛ 1

2

3

4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 ci 0 0
1 1 0 0
0 1 0 V0
0 0 1 V1

⎞
⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎝

1

2

3

4

⎞
⎟⎟⎠ (9)

The solution of (9) is written this way:

⎛
⎜⎜⎝

1

2

3

4

⎞
⎟⎟⎠ = ∑4

k=1
kWkewks, (10)

where wk are the eigenvalues of A, Wk are the 
eigenvectors of A and k are determined by ini-tial 
conditions.

Remark: Now the choice for a second order lter 
can be justi ed. If a larger order lter had been 
chosen, this would have lead to a larger ma-trix A. 
Then it becomes impossible to calculate 
analytically the eigenvalues and the eigenvectors 
of A.

w1 =
1 +
√

2
1  4ci

2
,

w2 =
1 
√

2
1  4ci

2
,

w3 =
V1 +

√
V1

2  4V0

2
,

w4 =
V1 

√
V1

2  4V0

2
,

(11)

and

, (12)

W3 =

⎛
⎜⎜⎝

0
0

w3
1

⎞
⎟⎟⎠ , W4 =

⎛
⎜⎜⎝

0
0

w4
1

⎞
⎟⎟⎠ (13)

formula-
using

Along

After calculation, a
tion of 1(s), 2(s), 3(s), 4(s)

1(0), 2(0), 3(0), 4(0) is obtained.
the characteristic curves, it can be written:

dP̂
ds

= P̂
t

dt
ds

+ P̂
1

d 1

ds
+ P̂

2

d 2

ds

+ P̂
3

d 3

ds
+ P̂

4

d 4

ds
= 

2

2 4
2P̂ (14)

The only solution is:

P̂(s) = P̂(0) exp

( 2

2
∫ s

0
4
2(u)du

)
(15)

As the expression
∫ s

0
4
2(u)du is difficult to un-

derstand written in this way, i are replaced by i = 
iewis.

W1 =

⎛
⎜⎜⎜⎜⎝

⎞−w2(w1(λ1 − V1)− ci + V0)

w1(λ1 − V1)− ci + V0)

V1 − w1

1

⎟⎟⎟⎟⎠

W2 =

⎛
⎜⎜⎜⎜⎝

−w1(w2(λ1 − V1)− ci + V0)

w2(λ1 − V1)− ci + V0)

V1 − w2

1

⎞
⎟⎟⎟⎟⎠
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So it leads to:

4 = 1 + 2 + 3 + 4. (16)

Let express the solution as a function of t:

P̂t

⎛
⎜⎜⎝

1

2

3

4

⎞
⎟⎟⎠=P̂0

⎛
⎜⎜⎝

1(0)
2(0)
3(0)
4(0)

⎞
⎟⎟⎠ .e (17)

where 1(0), 2(0), 3(0), 4(0) could be expressed 
with 1, 2, 3, 4 and t.

 = 
2

2

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1

2w1
+

2
2

2w2
+

2
3

2w3
+

2
4

2w4

+
2 1 2

w1 + w2
+

2 1 3

w1 + w3
+

2 1 4

w1 + w4

+
2 2 3

w2 + w3
+

2 2 4

w2 + w4
+

2 3 4

w3 + w4

⎞
⎟⎟⎟⎟⎟⎟⎠

(18)

With (17) a complete formula for the time de-
pending probability density function of the ran-
dom variables 1, 2, 3, 4 is given at every time t. 
The function  depends on the random vari-ables 
(18) and describes an ellipse. The term P̂0 is a
displacement of the properties at t = 0 along the
characteristic curves.

So the solution of (5) is:

Pt

⎛
⎜⎜⎝

x1
x2
x3
x4

⎞
⎟⎟⎠ = P0

⎛
⎜⎜⎝

x1(0)
x2(0)
x3(0)
x4(0)

⎞
⎟⎟⎠ ∗ 

⎛
⎜⎜⎝

x1
x2
x3
x4

⎞
⎟⎟⎠ , (19)

where x1(0), x2(0), x3(0), x4(0) can be expressed 
with x1, x2, x3, x4 and t and ∗ means the con-
volution product. The function  is the in-verse 
Fourier transform e  and is a gaussian probability 
law for random variables y1, y2, y3, y4 which are 
derived from x1, x2, x3, x4 with an au-tomorphism. 
The following initial condition are

apllied:

P0

⎛
⎜⎜⎝

x1(0)
x2(0)
x3(0)
x4(0)

⎞
⎟⎟⎠ = 

⎛
⎜⎜⎝

x1
x2
x3
x4

⎞
⎟⎟⎠ , (20)

where  is the standard Dirac distributon.
So the nal solution of (5) is:

Pt

⎛
⎜⎜⎝

x1
x2
x3
x4

⎞
⎟⎟⎠ = 

⎛
⎜⎜⎝

x1  x1(0) 
x2  x2(0) 
x3  x3(0) 
x4     x4(0)

⎞
⎟⎟⎠ (21)

In this way, the solution does not depend on 
time.

The solution has a gaussian form for the 4 
variables. This result is in accordance with (Be-
lenky 1993) considering only forced oscillations.

All results were obtained by generating a large 
number of simulations in which the sea state 
remain the same. The software used for the 
simulation is FREDYN. FREDYN calculate the 6-
DOF dynamics of a given boat with the potential 

ow assumption. Here the boat used for simulation 
is the F70-frigate of the French Navy. The case 
tested is the frigate in trans-verse sea with 0 or 6 
knots forward speed.

The time-independance of the probability is 
tested with long simulations. The hypotheses of 
calculation used in the rst part are not taken into 
account.
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For a serie of 50 simulations lasting 5 hours in a 
sea state de ned by a Pierson-Moskowitz spec-
trum with a signi cant wave height HS = 12.4m 
and a mean wave period TP = 12.7s, the max-imum 
of the roll angle for each simulation have been 
situated in time during the simulation. The number 
of maxima occuring before a certain time is 
counted and represented in Figure 1. The frigate’s 
forward speed is 6 knots.

time of the maximum number of maxima
< 2000s 8
< 4000s 11
< 6000s 23
< 8000s 27
< 10000s 31
< 12000s 33
< 14000s 37
< 16000s 46
< 18000s 50

Figure 1: Number of maxima versus time

The number of maxima is linearly growing, so 
the probability associated to roll motion is time-
independant.

A direct estimation of the probability density 
function has been calculated for 0 forward speed 
frigate in 5 sea states. The estimation is made 
according that over a long time the probability is

Figure 2: Conditional probability density func-
tion P (x1, x2 = 0|x3)

stable. The rst results showed a similar shape for 
the probability density function between sea states. 
To compare the sea states, Bayes’ for-mula was 
used so:

P (x1, x2, x3) = P (x1, x2|x3).P (x3), (22)

where | means knowing. The conditonal proba-
bility is supposed to be normal. For representa-tion, 
the results are taken at x2 = 0. Figure 2 show a 
prefered axis of the (x1, x3)-plan. A for-mula is 
given with variable change: Y1 = kx1+x3 and Y2 = 
kx3  x1. The variable Y2 is describ-ing the 
evolution along the axis and Y1 describes the 
evolution perpendicularly to the axis. The formula 
for P (x1, x2 = 0|x3) is of the following form:

(23)
The parameters k, h0, h1, h2, g1, g2, g3, g4 are 

calculated for 5 different sea states and the re-sults 
are written in the following table.

P (x1, x2 = 0|x3) = exp

⎛
⎝−
⎛
⎝h0 + h1Y1 + h2Y1

2

+g1Y2 + g2Y2
2

+g3Y2
3 + g4Y2

4

⎞
⎠
⎞
⎠ .
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HS TP h0 h1 h2 k
9.270m 12.36s -4.595 16.26 418.0 -0.4058
9.465m 12.57s -5.981 15.96 422.6 -0.4141
9.660m 12.79s -3.557 17.08 395.7 -0.4238
9.758m 12.90s -3.963 15.68 418.6 -0.4256
10.448m 12.40s 2.994 16.96 401.5 -0.4140

HS TP g1 g2 g3 g4
9.270m 12.36s 0.8710 -10.680 -6.489 41.45
9.465m 12.57s 0.6514 -9.714 -4.792 34.70
9.660m 12.79s 0.5147 -9.380 -3.882 31.26
9.758m 12.90s 0.5350 -9.441 -3.870 31.63
10.448m 12.40s 0.1893 -2.475 -1.229 7.584

The parameters h1, h2, k have really similar 
values for all the sea state. For the other param-
eters, the last sea state (HS = 10.448m, TP = 12.40s) 
gives values contrastive in the other sea states. The 
signi cative wave height of the last sea state is 
signi cantly higher than the others and, in the 
same time, the mean wave period remains the 
same. This leads to a much more dangerous sea 
state and ex-plains why this sea state is associated 
to con-strative values for h0, g1, g2, g3, g4. 
Nonetheless the value of h0, g1, g2, g3, g4 are of 
close order. This could indicate a slight evolution 
of these parameters with the sea state. The similar 
val-ues for h1, h2, k indicate these parameters are 
almost constant. The parameter k gives the di-
rection of the prefered axis at x2 = 0 and h1, h2 the 
decrease of the probability for points of the (x1, 
x3)-plan which are not on the axis.

The form of the results obtained by numerical 
simulation is in accordance with the analytical 
developpement such as the gaussian probability 
law for the random variable Y1.

The goal of the probability density estimation is to 
obtain a capsize probability. This leads to a

Figure 3: points of the angle-speed-moment-space 
with  > 48 , .  > 0

search for criteria of capsizing.

Here are compared simulations in which the roll 
angle has been really large and simulations leading 
to capsize. The sea state is still de ned by a 
Pierson-Moskowitz spectrum, HS = 12.5m and TP = 
12.6s. In the space de ned by an-gle, speed and 
moment (x1, x2, x3), points cor-responding to angle 
over 50  and speed of the same sign like angle 
(situations getting closer to capsize) are extracted 
Figure 3.

The points seem to get aligned in a same plan. 
Figure 4 show the points in this plan de ned by 
two arbitrary variables V1, V2. Red points 
correspond to simulations getting to capsize and 
blue points correspond to simulations without 
capsizing.

A stable area can be de ned with the trajec-
tories which do not lead to capsize. So even for a 
large angle, the boat could escape such danger-ous 
situation. Then the probability of capsizing is the 
probability for the trajectory in the angle-speed-
moment space to come out of the stable domain.
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Figure 4: comparison of trajectories either sta-
ble or leading to capsize

In the paper an analytical formula of the 
probability density function of the linear roll mo-
tion has been obtained. The properties have 
been tested for simulations with realistic sea 
state. The results are partially in accordance, 
but the time independance remains exact both 
for linear and non-linear roll motion. In some 
case, the gaussian law proved for the linear mo-
tion remains exact for the non-linear motion. 
On top of that capsize criterium has been found 
for the calculation of a capsize probability with 
the probability density function of the roll angle, 
speed and moment.
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