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ABSTRACT  

We investigate “high-run” events of ships in following seas. These are cases of ship motion 
when, due to waves’ effect, a ship attains abnormally high speed. Investigations are carried out in 
three directions: firstly, the statistics of high-runs are calculated, exploring in particular their 
dependence on the wave spectrum and the sea state. Secondly, a rather neglected up to now method, 
proposed by Grim, for the quantification of the probability of high-run occurrence is implemented. 
Lastly, the focus is set on the connection of the instantaneous wave celerity with the mean surge 
velocity during high-run. For its evaluation, two different error metrics are implemented. 
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1. INTRODUCTION

A direct approach for calculating the
probability of surf-riding of a ship operating in 
extreme irregular waves could be based on the 
identification of  time intervals  in which her 
speed is maintained at a level that is 
consistently above the normally expected range. 
Any individual realisation of such behaviour 
will be called hereafter “a high run” and it 
could be considered as generalisation of surf-
riding for a multi-frequency wave environment. 
Whilst its inception requires careful 
consideration of system’s phase-space, 
empirically it could be recognised by the up-
crossing of an appropriate surge velocity 
threshold such as the instantaneous wave 

celerity. It is noted however that, for irregular 
seas, the role of wave celerity for surf-riding 
capture is still inferred from phenomenology 
rather than from proof (for some insights see 
Spyrou et al 2014a). A high-run’s end could be 
similarly defined by the down-crossing of a 
suitable threshold, which however it is not easy 
to be uniquely defined through experience. 

he literature in the topic is scarce. 
However, in a pioneering (but rather 
oversighted) work, Grim had attempted to 
determine how a ship could be accelerated by 
waves and then maintain a speed higher than 
her mean speed, for extended time intervals in 
irregular seas (Grim 1963). He had called such 
phenomena “long-runs”. By a string of 
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eloquent and yet quite severe analytical 
approximations, he had produced statistical 
estimates of their existence (based on up-
crossing of a speed level that he had considered 
as critical) and their duration.

In the current study the aim was the 
systematic examination of the probabilistic 
properties of the high-runs. It is well-known 
that, the longer a ship maintains a speed higher 
than normal, the more likely it is to experience 
the broaching-to instability (Spyrou 1995). The 
importance of the topic is thus prevalent. 
Firstly, a campaign of numerical simulations 
with direct counting of high-run durations was 
performed. Targeted quantities were: the mean 
duration of high-run; and the mean time 
between successive high-runs. Then, the key 
elements of Grim’s approach were 
implemented, taking advantage however of 
current numerical calculation capability. Thus, 
alternative probability figures were derived 
which could be contrasted against those 
obtained by direct counting. Our final goal was 
to examine the correlation of instantaneous 
wave celerity with surge velocity during high-
run incidents.

2. HIGH-RUN STATISTICS

2.1  Mathematical model 

The mathematical model of surge motion in 
following seas was written for an earth-fixed 
observer, as follows: 
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where  is the longitudinal position of the ship 
and m, uX  are her mass and “surge added 
mass” respectively. In the summation term 
denoting wave force, ki, i and i stand 
respectively for the i harmonic’s wave number, 

frequency and random phase.  Fxi denotes the 
amplitude and fi the phase of the harmonic 
wave force component. Also, n is the propeller 
rate and ir , i are polynomial coefficients 
appearing in the resistance and thrust force 
expressions, respectively.

2.2  “High-run” definition 

An apparent choice of a velocity threshold 
whose upcrossing would signal a high-run is 
the instantaneous wave celerity. Yet, it is 
known that attraction towards surf-riding is 
very likely to have started from a slightly 
earlier time (and thus from a lower velocity). If 
this early stage is neglected, a small 
underestimation of the probability should be 
expected. As down-crossing threshold was set, 
at first step, the nominal speed. This threshold 
should not be crossed by speed fluctuations 
occurring during surf-riding. The nominal 
speed is a safe choice from this point of view, 
although a conservative one, possibly 
contributing to a slight overestimation of 
probability. This may be statistically cancelled 
out, at least partly, with the underestimation 
linked with the beginning of the high-run. As 
an extra condition we request the surge velocity 
to be always higher than the nominal speed in 
order to exclude, in relatively short wave 
lengths and mild wave height conditions, cases 
that qualitatively, should not be counted as 
high runs. In Figure 1 are shown time segments 
of high-run in accordance to the presented 
definition. It is desired to obtain the statistics of 
the high-run’s duration as well as of the time 
interval between successive events of this kind. 
The mean duration is obtained by summing up 
all individual durations and then dividing by 
the number of events: 

( )
high run high-run

1 1

N N
i

i i
t t i (2) 

A similar formula is applied for the mean time 
between high-runs.
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Figure 1   Schematic definition of high-run.  

2.3  Simulation settings 

The ship selected for applying the 
calculation schemes is the ONR “tumblehome 
topside”, well-known from several previous 
studies (for example, Spyrou et al 2014a). A 
JONSWAP spectrum is considered, discretized 
by applying a fixed frequency increment 

sim2 t where 300simt  s  is the so-called 
“basis simulation time”. The total simulation 
time was a multiple of it (up to sim40 t ). Four 
ranges around spectrum’s peak were separately 
examined, assumed containing the wave 
frequencies participated in the simulations. In 
Figure 2 are shown the wave amplitudes 
obtained from the spectrum, considering 
frequency ranges p0.2  and p0.4 . A different 
choice would have been to modify the wave 
amplitude so that the variance remains constant. 
In that case the wave amplitudes obtained 
would be considerably higher (see again Figure 
2).  In the current study wave realizations were 
produced according to the first method, 
meaning that, the increase of the frequency 
range increased also the energy.

Figure 2   Wave amplitudes for 2 frequency 
ranges and their modified values when the 
variance is kept constant. HS=6 m and TP=10 s.

Lastly, in Table 1 appear the values of the 
remaining simulation parameters. Sensitivity 
studies in relation to the sea state, narrowness 
of the spectrum and the simulation time were 
carried out. We run 100 wave realizations per 
parameters’ setting. The nominal and the initial 
speed of the ship, in each scenario, were not 
changed (for extra explanations see Spyrou et 
al 2014b). 

2.4  Results

 In Figure 3 appear characteristic high-run 
durations, obtained by simulation. Vast 
differences are noticed, some high-runs lasting 
just a few seconds and others reaching 1000 
seconds! The probability density function (pdf)
of the mean duration, based on 100 
simulations, is shown in Figure 4. The effect of 
the sea condition on the mean, and also on 
certain percentiles, appear in Figures 5 and 6. 
Convergence with respect to the simulation 
time is confirmed from Figure 7. 

Effect of wave frequency range on mean 
duration of high-run 

When the frequency range is narrow, mean 
times are higher and they are concentrated 
around the lower peak periods (Figure 9).
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Table 1 Range of the parameters of simulation 

Parameter Value

Vnom (m/s) - Fn 12 – 0.308

V(0) (m/s) 10

wave realizations per 
scenario 100 

HS (m) (3-6)

TP (s) (8.5-13)

(% p one side) (5-30)

Total simulation time (s) (tsim - 40xtsim)

Figure 3 Recorded durations of high-run 
incidents in different simulations. 

Figure 4 pdf of mean high-run duration [HS=6
m, TP=9.5 s, 40 tsim, frequencies in 10% P
(one side)]. 

When the range is broadened, so do the 
peak values of the mean. The trend depends on 
the assumed significant wave height and it is 
more pronounced at higher significant wave 
heights.

Figure 5 Mean value and percentile means (10th

and 90th), as TP is varied (HS=6 m and 
simulation time 40 tsim.). Standard deviations 
are included.  

Figure 6 As in Figure 5, with varied significant 
wave height and fixed peak period.  

Figure 7 Convergence of statistics.

Effect of wave frequency range on mean time 
between high-runs 

The mean time between successive high-
runs is increased with the peak period (Figure 
9). The effect of varying the significant wave 
height can be similarly assessed from Figure 10. 
The broader the frequency range, the more 
frequent the high-run occurrence. There seems 
to be a sharp increase of the mean time beyond 
a certain value of peak period. On the other 
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hand, the significant wave height seems more 
influential when the frequency range is narrow.  

Figure 8 Mean duration of high-run for a 
gradually broader frequency range, as peak 
period is varied.

Figure 9 Mean time between successive high-
runs as the peak period is varied.

Figure 10 Mean time between high-runs as 
significant wave height is varied. 

3. THE APPROACH OF GRIM

3.1 Key points

The main issue addressed by Grim was the 
probabilistic quantification of the occurrence 
and duration of high-run (“long run”), taking 

into account the strongly nonlinear character of 
surge motion when the phenomenon occurs, in 
a following irregular sea (Grim 1963). 
However, the lack of computer power for the 
demanding numerical calculations, together 
with the lack of a theory explaining surf-riding, 
at that time, had led him to incorporate several 
simplifying assumptions whose influence was 
unknown. Grim had focused on the condition 
generating unusually high surge acceleration 
and on the duration of the ensuing high speed 
run, which he assumed represented by a 
velocity plateau. Thus a simple, trapezoidal 
structure of ship speed was considered during 
such incidents. Next is presented a summary of 
Grim’s method.  

3.2 Mathematical model set-up

The surge equation is written with respect 
to an inertial system that moves with the ship’s 
constant nominal speed V . The method 
assumes that the time is paused at the instant t
when high-run’s acceleration begins. Later 
time is measured through a new time variable 

:
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The distance variable x0 determines ship’s 
position. Function 2 3

00 0, ,N x x x  refers to the 
resistance and thrust forces, xf  is the RAO of 
the Froude-Krylov surge wave force [divided 
by the mass (including added mass) of the ship] 
and S  is the wave spectrum. Consistently with 
the model of section 2, the term 

2 3
00 0, ,N x x x should take the following form: 
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where resistance and thrust, at the nominal 
speed are, respectively:  
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At the critical stage, the ship is assumed 
under a constant acceleration for a time 
duration 1 . When the critical velocity critV  is 
reached the ship maintains this velocity for 
time 2 1  (see eq. 6). Thus, the required 
acceleration to realise the high run should be: 

1 .critb V V

1
0

1 1 2

,   0
,

b
x

b
(6) 

We note that, whilst for the regular sea he 
identified celerity as the critical speed, he gave 
no similar indication for the choice of critical 
speed in an irregular sea. 

The wave force in (3) is considered through 
its integral for a finite duration 1 (impulse 
function) – this leads to the key idea of 
producing an impulse spectrum. Integration of 
(3) in time leads to an equation based on
momentum:
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  Calculating partly the force integral leads 
to the following expression of the impulse (for 
details see Grim 1963): 

2 2 2 2

0

cos 1 '     x
V t f T I Y S d
g

          (8)                                                           
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The term 2 2 2 2
xf T I Y S is the

sought impulse spectrum, while '  is another, 
but still random, phase. Since the maximum 
value of the impulse is of interest, the cosine 
term is set to 1. The impulse is a random 

function and Grim assumed that its amplitude 
follows the Rayleigh distribution. In analogy to 
the mean wave amplitude, the mean impulse 
amplitude (or some other percentile average of 
it) is obtained from the square root of the area 
under the impulse spectrum, for  from 0 t .

 1/ 2 2 2 2
1/

0

   Y  n
n x dI f T I S  (9) 

where the coefficient 1/ n  obtains specific 
values depending on the average of the impulse 
highest 1 n  amplitudes. For example, 

1/10  1.8  corresponds to the average of the 
1/10 highest amplitudes. Additionally, the 
probability to exceed this average value can be 
obtained from the Rayleigh density function 
(3.92%). So, eq. 7 is transformed to the next 
equation where one can solve for 1/n in order 
to obtain the probability to reach a critical 
velocity within time 1 :

1
 1/

1 0
2 3
0

0
0, /, u

nx x m X Ib N x d (10)

By integrating eq. 3 up to 2  and 
repeating the above procedure, a statistical 
estimate of the time duration of high-run can be 
obtained.

3.3 Application and results

The above methodology has been applied 
through the next steps: 

The critical velocity is set equal to the 
celerity of spectrum’s peak frequency.  
The probability to exceed the targeted 
velocity in a given time 1  is calculated. 
Assuming that the critical velocity has 
been reached in 1 , we calculate the 
probability to exceed certain durations 

2 1  of high runs.
The procedure is repeated by selecting 
various critical velocity levels, deriving 
from the nominal speed. 
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The nominal speed is 12 m/s and the 
spectrum is JONSWAP with its full frequency 
range.

Accelerated motion 

In Figures 11 and 12 are shown plots of the 
calculated probability the ship speed to exceed 
the defined wave celerity. One could regard the 
time 1  as a fraction of the apparent wave 
period, i.e. it is comparable to the time, during 
an encounter wave cycle, when the ship is 
pushed by the wave. For the selected speed 
and peak periods, the 1  value should be 
somewhere in the range 18-26s. In Figure 13 
several velocity thresholds have been tried. To 
be noted that the threshold 1.3Vnom corresponds 
to the wave celerity of 10 s.PT

Duration of high-run 

The statistics of high-run duration depends 
on the time 1 (see Figure 14). It appears that, 
the sooner the threshold is reached the longer 
the high-run will last. However, according to 
Figure 11, the probability of a velocity 
threshold crossing becomes significant for 

1 20 s. Given that the threshold has been 
reached, we examine the effect of peak period 
and significant wave height on high-run’s 
duration. Thus, Figures 15 and 16, showing the 
effect of peak period and significant wave 
height on high-run duration, were drawn for 

1 20 s .

Figure 11 Probability to exceed the celerity 
value corresponding to the peak frequency, 
within a certain time, for HS=6 m.

Figure 12 Probability to exceed the celerity 
value corresponding to the peak frequency, 
within a certain time, for P=10 s.

Figure 13 Probability to exceed various values 
of critical velocity (defined by a constant times 
the nominal speed) as a function of 1  (HS=6 m 
and P=10 s). 

By increasing the peak period, the high-run 
occur less frequently. One notes in Figure 16 
the substantial decrease of the duration for 
lower significant wave heights. Also, from 
Figure 17 it is recovered that, setting a higher 
velocity threshold induces a significant 
reduction of probability. 

Figure 14 pdf of high-run duration for certain 
wave parameters (3 cases of 1 ).
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Figure 15 Probability of exceeding a duration 
value, for several peak periods ( 1 20 s ).

3.4 Comparison with direct counting 

We contrasted the statistics of high-run 
duration obtained with the method described in 
section 2, against the respective result based on 
Grim’s approach (Figure 18). As observed, 
Grim’s method suggests that the longer high-
run are more probable (when compared with 
the mean durations obtained from simulation). 
This could be also verified by the fact that the 
mean duration derived from Grim’s method 
(150 s) is approximately equal with the mean 
obtained for the 80th percentile. A qualitatively 
similar tendency was noticed also in other sea 
states.

Figure 16 Probability to exceed a duration 
value. The threshold speed is the celerity 
corresponding to the peak frequency of the 
spectrum ( 1 20 s ). 

Figure 17  Probability of high-run duration for 
various velocity thresholds ( 1 20 s ).

In interpreting any discrepancies between 
the results of the two methods, one should take 
into account their main differences: firstly, 
Grim’s method assumes a constant (and equal 
to the targeted threshold) surge velocity during 
the high-run (possibly inspired by the regular 
wave case when surf-riding occurs). 
Nonetheless, we have observed fluctuations 
(sometimes strong) in high-runs.  Furthermore, 
the velocity thresholds that bound the high-run 
in the two methods are different.  In the direct 
counting, it is specified by the instantaneous 
wave celerity and the nominal speed while on 
Grim’s approach the limit threshold is constant 
and equal to the celerity of peak frequency.  

Figure 18  Comparison of probabilities of high-
run duration between simulation statistics and 
Grim’s method (HS=6 m, TP=10 s). 
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4. CORRELATION OF CELERITY AND
MEAN SPEED IN HIGH-RUNS

4.1 Objectives of the study and error metrics 

The aim of this final study is to examine 
whether could be objectively established that 
the instantaneous wave celerity truly dictates 
the mean surge velocity during high-run 
events. The frequency range is systematically 
varied in order to study the effect of a transition 
from a “narrow” to a “broad-band” spectrum. 
Methods of calculation of the instantaneous 
wave celerity c t  in irregular waves were 
discussed earlier (see Spyrou et al. 2014c). The 
one used here is derived from the concept of 
instantaneous frequency. 

The mean speed U t  is based on several 
speed values sampled between successive 
speed maxima and minima. Details of the 
calculation procedure are found in Spyrou and 
Themelis (2013). To quantify the difference 
between the two time-varying processes of 
interest (the instantaneous celerity and the 
mean speed), two error metrics commonly 
employed in studies addressing discrepancies 
of time histories will be used (Sarin et. al. 
2010). The first metric is the well-known 
Euclidean vector norm: 

1/2
2

2
1

N

i i
i

L c Uc U (11) 

where ,c U  are the discretised time histories 
(vectors of equal dimension N) of 
instantaneous celerity and mean speed, 
respectively. It should be noted that vector 
norms cannot distinguish an error due to phase 
difference from an error due to magnitude.   

The second error metric has been proposed 
by Sprague and Geers (2004). It combines the 
error M due to magnitude differences (eq. 12) 
and the error P due to those of phase (eq.13): 
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The combined error is: 

2 2
erC M P          (15)  

These two error metrics will be applied not 
only to the instantaneous celerity versus the 
mean speed, but also to the celerity 
corresponding to the peak frequency versus the 
mean speed, because the latter is also a strong 
candidate for the critical speed of surf-riding. 

4.2 Simulation settings 

The “tumblehome” vessel is assumed 
operating at nominal speed 14 m/s.  Ranges of 
wave frequency with gradually increasing 
width are tested (JONSWAP spectrum). Per 
frequency range, 10 realisations are generated. 
The significant wave height and the peak 
period are 6 m and 10 s, respectively. The total 
simulation time is 5000 s; however the first 
2000 s of each run are excluded from further 
processing. The time step is 1 s.    

4.3 Results 

Error mean values according to the two 
applied metrics were obtained. To ensure that 
the comparison is carried out only during time 
segments of high run occurrence, we 
introduced a velocity condition requiring, the 
mean surge velocity to be greater than the 
nominal speed ( nomU t U ) (“1st velocity 
condition”). We tested also a slightly modified 
version of it: nom1.1U t U  (“2nd velocity 
condition”). Finally, we calculate the error 
values between the mean of the surge velocity 
and the mean of the instantaneous celerity. For 
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the latter, we follow the same calculation 
procedure as for the mean surge velocity.  

Typical time histories on which the two 
metrics are applied are shown in Figure 19. 
Errors according to the Euclidean metric are 
seen in Figure 21 and 22, for the first and the 
second velocity condition, respectively.  In 
contrast, Figures 23 and 24 show the errors 
according to the Sprague and Speers metric. 
The results based on the Euclidean metric 
suggest that, the discrepancy of mean speed 
from the celerity of peak frequency is 
consistently less than that of mean speed from 
instantaneous celerity. This trend appears too if 
the 2nd velocity condition ( nom1.1U t U ) is 
imposed. The same conclusion is drawn when 
the Sprague-Geers metric is used, if the first 
velocity condition is applied.

Figure 19 Time histories of surge velocity 
(upper diagram), instantaneous wave celerity 
(middle) and mean surge velocity (low). 
Continuous and dashed straight lines show the 
wave celerity of the peak frequency and the 
nominal speed, respectively. The simulations 

were based on a frequency range 20% p (both
sides).

However, for the second velocity condition 
the situation is reversed and the correlation of 
instantaneous celerity with mean speed is 
superior, for frequency ranges up to 45% p.
Even better correlation is achieved when the 
mean of the instantaneous celerity is taken, in 
place of the instantaneous celerity itself. In 
general, the error increases as the frequency 
range of the spectrum is broadened. 

CONCLUDING REMARKS

The statistics of high-run occurrences in
irregular seas were investigated by simulation–
based direct counting and by an approximate 
semi-analytical method. The topic remains 
open since the dynamics behind these events is 
not completely understood yet. The velocity of 
the high-run shows good correlation with the 
mean instantaneous celerity when an error 
metric combining errors of amplitude and 
phase is applied.

Figure 20 Calculated error according to 
Euclidean metric (1st velocity condition) 
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Figure 21 Calculated error according to 
Euclidean metric (1st velocity condition). 

Figure 22 Error according to the Sprague and 
Geers metric, when satisfying the 1st velocity 
condition.

Figure 23 Error according to the Sprague and 
Geers metric when satisfying the 2nd velocity 
condition.
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