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ABSTRACT

Roll motion is the most critical ship motion leading to capsizing. The single-degree-of-freedom 
(SDOF) model is applied in order to simulate the roll motion in random beam seas. The random 
wave excitation term in the SDOF model is approximated by a second-order linear filter or more 
accurately, by a fourth-order linear filter as a filtered white noise process. Then the original SDOF 
model would be extended into a four-dimensional (4D) or a six-dimensional (6D) dynamic system, 
respectively. For the 4D coupled system, it can be viewed as a Markov system whose probability 
properties are governed by the corresponding Fokker-Planck equation. With the advantage of 
Markov property, the stochastic roll response can be obtained by the efficient 4D path integration 
(PI) method. The effect of different damping models, i.e. the linear-plus-quadratic damping (LPQD) 
model and linear-plus-cubic damping (LPCD) model, on the stochastic roll response is investigated. 
Furthermore, Monte Carlo simulation is introduced in order to validate the stochastic roll responses 
calculated by the 4D PI method as well as to study the influence of two different linear filter models 
on the response statistics. 

KEYWORDS: stochastic roll response; path integration method; filtering technique; nonlinear damping; Monte Carlo simulation. 

1. INTRODUCTION

For large amplitude roll motion in random
seas, ship motion is strongly nonlinear and the 
dynamic behaviour of the vessel as well as the 
stochastic nature of random wave excitation 
should be taken into consideration in ship 
stability analysis. Moreover, the problem of 
estimating the stochastic response of nonlinear 
dynamic system excited by random external 
loads has been a demanding challenge for 
several decades (Naess & Johnsen, 1993). 

Markov models have been widely applied 
in the area of stochastic dynamic analysis of 
roll motion in random seas. The shaping filter 
technique is introduced in order to approximate 
the wave excitation as a filtered white noise 
process. Subsequently, an augmented dynamic 
system is created when the original dynamic 
system is coupled with the filter model. Under 
the Markov theory, the joint probability density 
function (PDF) of the roll response can be 
obtained by solving the governing equation, i.e. 
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the Fokker-Planck (FP) equation. However, 
extended dynamic system usually corresponds 
to a high-dimensional FP equation and 
analytical solutions to high-dimensional FP 
equations are only available for some linear 
systems and a very restricted class of nonlinear 
systems. 

The path integration (PI) method is an 
efficient approximation for solving the high-
dimensional FP equations with reliable 
accuracy. This method is based on the Markov 
property of the dynamic system and the global 
solution of the FP equation can be constructed 
by linking the explicitly known local solutions. 
Recently, this algorithm was successfully 
extended to 4D for studying the stochastic roll 
response of a ship in random beam seas (Chai 
et al. 2014).

Besides the efficient PI method, Monte 
Carlo simulation is another methodology to 
determine the response statistics of the 
nonlinear dynamic systems subjected to 
random external forcing. The nonlinear and 
time-dependent terms can be easily and directly 
dealt with. However, the main drawback of 
Monte Carlo simulation is the associated 
computational efficiency will be sacrificed for 
estimation of the extreme responses with low 
probability levels. 

The nonlinearity of the roll damping has 
been recognized to be crucial for evaluating the 
ship stability since Froude’s time (Bikdash et 
al., 1994). Since the quantitative evaluation of 
roll damping is difficult, empirical models are 
used to describe the roll damping term. The 
linear-plus-quadratic damping (LPQD) model 
has been verified by numerous studies of 
experimental data (Roberts & Vasta, 2000). On 
the other hand, the linear-plus-cubic damping 
(LPCD) model is infinitely differentiable, and 
mathematically preferable to the LPQD model. 
Bikdash et al (1994) derived a condition under 
which the LPCD model approximates well with 
the LPQD model in a least-squares sense. 

   In this paper, the wave excitation 
spectrum is modelled by a second-order linear 
filter and a more precise fourth-order linear 
filter. The effect of different linear filters on the 
stochastic roll response is investigated by 
comparison with the Monte Carlo data. The 
LPQD model is transformed into a LPCD 
model by the least square method. Then, the 
influence of two different damping models on 
the stochastic roll response, especially on the 
extreme response are evaluated. The accuracy 
of the 4D PI method is verified by means of the 
versatile Monte Carlo simulation technique. 

2. THEORETICAL BACKGROUND

2.1 Mathematical model of roll motion 

When the ship is excited by beam wave 
loads, the rolling behaviour can be represented 
by the following single-degree-of-freedom 
(SDOF) equation: 

44 44 44 44

3
1 3

( ) ( ) ( ) ( ) ( )

( ( ) ( )) ( )
qI A t B t B t t

C t C t M t         (1) 

where ( )t and ( )t are the roll angle and the roll 
velocity, respectively. I44 is the moment of 
inertia with respect to an axis through an 
assumed roll center, A44 denotes the added mass 
coefficient. B44 and B44q are the linear and 
quadratic damping coefficients.  is the 
displacement of the vessel, C1 and C3 are the 
linear and nonlinear roll restoring coefficients 
of the restoring arm. M(t) represents the 
random wave excitation moment. 

The wave elevation and wave excitation 
moment are assumed to be stationary Gaussian 
stochastic processes. The wave excitation 
moment spectrum, SMM( ), can be determined 
as follows(Jiang et al., 1996): 

2( ) ( ) ( )MM rollS F S (2)
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in which S ( ) is the wave energy spectrum, 
|Froll( )| represents the roll excitation moment 
amplitude per unit wave height. 

Dividing equation (1) by (I44 + A44), the 
final form of the differential equation is 
obtained as: 

44 44

3
1 3

( ) ( ) ( ) ( )

( ) ( ) ( )
qt b t b t t

c t c t m t
(3)

where b44, b44q, c1 and c3 are relative roll 
parameters. The spectrum of the relative roll 
excitation moment, Smm( ), is expressed as: 

2 2
44 44( ) ( ) ( ) ( )mm rollS F S I A        (4) 

Furthermore, the SDOF model (3) can be 
transformed into the following state-space 
equation:

1 2
3

2 44 2 44 2 2 1 1 3 1 3( )q

dx x dt
dx b x b x x c x c x x dt

(5)

where x1= (t), x2= ( )t , x3= m(t).

2.2 Shaping filter technique 

Dostal and Kreuzer (2011) proposed a 
second-order and a fourth-order linear filter to 
fit the desired narrow-banded spectrum. In this 
work, both of the linear filters can be applied in 
order to model the target spectrum, i.e. the 
relative wave excitation moment spectrum 
Smm( ). The second-order linear filter is given 
by the following differential equation 

3 4 3

4 3

( )dx x x dt dW
dx x dt

(6)

where x3 and x4 are the state variables in the 
filter equation with x3 representing the output 
m(t). dW(t)=W(t+dt)-W(t) is the increment of a 
Wiener process with E{dW(t)}=0 and E{dW(t) 
dW(t+dt)}= (dt), where (·) represents the 
Dirac function. The spectrum generated by 
equation (6) is given by 

2 2

2 2 2 2

1( )
2 ( ) ( )ndS (7)

The fourth-order linear filter which 
represents a more accurate approximation is 
given by the following expression: 

5 6 1 5

6 7 2 5 1

7 8 3 5

8 4 5

( )
( )
( )

dx x x dt
dx x x dt dW
dx x x dt
dx x dt

(8)

where x5, x6, x7, x8 are variables introduced for 
the state-space representation and x5 represents 
the filter output m(t). The spectrum generated 
by equation (11) will have the following form: 

2 4
1

4 2 2 2 2 2 2
1 1 2 2

1( )
2 [( ) ( ) ][( ) ( ) ]thS (9)

where the parameters 1, 2, 3, 4 in equation 
(9) can be determined by the following
relationship: 1= 1+ 2, 2= 1+ 2+ 1 2, 3= 1 2
+ 2 1, 4= 1 2. The parameters , , in the
second-order linear filter and the parameters 1,

2, 1, 2, 1 in the fourth-order filter are
determined by a least-square algorithm which
is utilized for fitting of the target spectrum,
Smm( ). The bandwidth and the peak frequency
of the filtered spectrum can easily be adjusted
by changing the values of these parameters.

By combining the governing equation of 
the roll motion (5) with the linear filter 
equation (6) or (8), ship roll motion in random 
beam seas can be described by a 4D or a 6D 
state space equation, respectively. 

2.3 Path integration method 

The 4D state space equation can be 
expressed as follows:

1 2
3

2 44 2 44 2 2 1 1 3 1 3

3 4 3

4 3

( )

( )
q

dx x dt

dx b x b x x c x c x x dt

dx x x dt dW
dx x dt

(10)
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Equation (10) represents a Markov dynamic 
system driven by Gaussian white noise. It can 
be expressed as an ˆIto stochastic differential 
equation (SDE): 

( , ) ( ) ( )d a t dt b t d tx x W (11) 

where x(t)=(x1(t),…,x4(t))T is a 4D state space 
vector process, the vector a(x,t) represents the 
drift term and b(t)dW(t) is the diffusive term. 
The vector dW(t)=W(t+dt)-W(t) denotes 
independent increments of a standard Wiener 
process.

The solution x(t) to equation (11) is a 
Markov process and its transition probability 
density (TPD), also known as the conditional 
PDF, p(x,t|x ,t ) satisfies the FP equation which 
is casted in the following form: 

4

1

24 4

1 1

( , | , ) ( , ) ( , | , )

1 ( ( ) ( )) ( , | , )
2

i
i i

T
ij

i j i j

p t t a t p t t
t x

b t b t p t t
x x

x x x x x

x x
(12)

Unlike direct numerical techniques, such as 
the finite-element method and the finite 
difference method, aiming to solve the FP 
equation (12) and obtain the TPD directly, the 
PI method captures the probabilistic evolution 
of the process x(t) by taking advantage of the 
Markov property of the dynamics system (11). 
In principle, the PI method is an approximation 
approach and the PDF of the process x(t) can 
be determined by the following basic equation: 

4
( , ) ( , | , ) ( , )

R
p t p t t p t dx x x x x (13)

where
4

1
i

i
d dxx .

Specifically, the value of the PDF at time t,
p(x,t), can be calculated by equation (13) with 
the value of previous PDF at time t  as well as 
the value of conditional PDF, p(x,t|x ,t ). For a 
numerical solution of the SDE (11), a time 
discrete approximation should be introduced. 
Naess and Moe (2000) proposed a fourth-order 

Runge-Kutta-Maruyama (RKM) discretization 
approximation: 

( ) ( ) ( ( ), ) ( ) ( )t t r t t t b t tx x x W             (14) 

where the vector r(x(t ), t ) is the explicit 
fourth-order Runge-Kutta approximation or the 
Runge-Kutta increment. Since W(t) is a Wiener 
process, the independent increment W(t )=
W(t)-W(t ) is a Gaussian variable for every t .

If we consider only the deterministic part of 
equation (11), the approximation (14) reduces 
to the fourth-order Runge-Kutta approximation 
x(t)=x(t )+r(x(t ),t ) t. Experiments have 
shown that, for the Markov systems, the 
accuracy associated with approximating the 
deterministic terms is the most important (Mo, 
2008). In this regard, the accuracy of the 
fourth-order RKM approximation is 
satisfactory since the fourth-order Runge-Kutta 
approximation follows the time evolution of 
the deterministic part of equation (11) with an 
accuracy to the order of O( t5). 

  The time sequence 0{ ( )}ii tx is a Markov 
chain and it can approximate the time-
continuous Markov process solution of the 
SDE (11) when the time increment t=t-t  is 
sufficiently small. Moreover, the conditional 
PDF of the process x(t), p(x,t|x ,t ), follows a 
(degenerate) Gaussian distribution and it can be 
written as (Naess & Johnsen, 1993): 

1 1 1

2 2 2 3 3

4 4 4

( , | , ) ( ( , ))
( ( , )) ( , | , )
( ( , ))

p t t x x r t
x x r t p x t x t
x x r t

x x x
x
x

(15)

where 3 3( , | , )p x t x t is given by the relation:

3 3 2

2
3 3 3

2

1( , | , )
2

( ( , ))exp
2

p x t x t
t

x x r t
t
x

(16)

in which ri(x , t), i=1,2,3,4, are the Runge-
Kutta increments for the state space variables. 
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Since the expression for the conditional 
PDF is known, the time evolution of the PDF 
of x(t) can be determined by the iterative 
algorithm (17) if an initial PDF p(x(0), t0) is 
given

4 4

( ) ( 1)
1

1

(0) (0) ( 1)
0

( , ) ( , | , )

( , )

n
i i

i iR R i

n

p t p t t

p t d d

x x x

x x x
(17)

where x= x(n), t = tn = t0+n. t.

Equation (17) describes the mathematical 
principle of the PI approach. In this work, the 
initial PDF p(x(0), t0) is chosen as a 4D 
Gaussian PDF with zero mean and variances 
evaluated by a simple Monte Carlo simulation. 
The straightforward Monte Carlo simulation 
ensures that the initial 4D Gaussian PDF 
includes all the information corresponding to 
the selected parameters of the dynamic system, 
and it also provides a rational computational 
domain for the subsequent simulation. For the 
numerical implementation of the iterative 
algorithm (17), it represents the PDF at the 
previous time t  as an interpolating spline 
surface via parabolic B-spline and then it 
evaluates the PDF at time t by several specific 
steps. The numerical iterative algorithm and the 
associated specific computational steps have 
been systematically described by Iourtchenko 
et al (2006) and Yurchenko et al (2013). 
Moreover, the capability of the PI method in 
producing accurate and reliable solutions for 
the stochastic dynamic systems has been 
demonstrated by numerous examples (Mo, 
2008).

3. MEAN UPCROSSING RATE

The mean upcrossing rate is a key
parameter for estimating the stochastic 
responses, especially the large and extreme 
responses. A nice aspect of the PI method is 
that the joint PDF of the roll angle and the roll 
velocity can be calculated directly. Then the 
mean upcrossing rate can be given by the Rice 
formula 

0
( ; ) ( , ; )v t f t d (18)

where v+( ;t) denotes the expected number of 
upcrossing for the -level per unit time at time t
by the roll angle (t), ( , ; )f t is the joint PDF 
of the roll angle and the roll velocity at the time
instant t.

For nonlinear ship rolling in beam seas, due 
to the presence of negative nonlinear stiffness 
term in the SDOF model (1), ship capsizing 
may happen when the predetermined 
simulation time T is long enough or the 
intensity of the external excitation is strong 
enough. If the mean time to capsize is long 
enough, the dynamic system can be regarded as 
a highly reliable system and the corresponding 
roll response reaches stationarity in an 
approximate sense (Roberts & Vasta, 2000). 

As for the four-dimensional dynamic 
system (10) or the six-dimensional dynamic 
system obtained by combing the equations (5) 
and (8), the fourth-order RKM method is 
adopted to solve the corresponding SDE. The 
mean upcrossing rates can be estimated from 
the time series of responses. Let  ( ; )i in T
denote the counted number of upcrossing for 
the level  during the time interval (0, Ti) for 
simulated time history No. i. The appropriate 
sample mean value of averaged mean 
upcrossing rate, ˆ ( )v  is then obtained as: 

1

1

( ; )
ˆ ( )

k

i i
i

k

i
i

n T
v

T
(19)

A fair approximation of the 95% confidence 
interval, CI0.95, for the value of ˆ ( ) can be 
obtained as (Naess et al, 2007): 

0.95
ˆ ˆ( ) ( )ˆ ˆ( ) ( ) 1.96 , ( ) 1.96s sCI v v

k k
  (20) 

Where the empirical standard deviation 
ˆ( )s is given as 
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2
2

1

( ; )1ˆ ˆ( ) ( )
1

k
i i

i i

n T
s v

k T
               (21) 

Moreover, the selection of the number of 
simulation, k, for the Monte Carlo simulation is 
selected according to the upcrossing rates in the 
tail region and the length of the predetermined 
simulation time T. Usually, low upcrossing 
rates and short time periods T corresponds to a 
large simulation number k.

Ship stability failure occurs when the roll 
angle exceeds some certain values, such as the 
angle of vanishing stability or some large roll 
angle leading to damage. Assume that the 
upcrossing events in the high level response 
region are statistically independent and the 
random process (t) is not extremely narrow-
banded, the exceedance probability for a 
duration of exposure time T, P (T), can be 
approximated by a widely used Poisson 
estimate, which is given as follows: 

0
( ) 1 exp( ( ; ) )

1 exp( ( ) )

T
P T v t dt

v T
(22)

where v+( ) represents the mean upcrossing rate 
of the level  at a suitable reference point in 
time, which can be determined directly by  the 
4D PI approach and the Rice formula (18).  

4. SIMULATION RESULTS

4.1 Ship parameters and excitation 
spectrum

In this section, an ocean surveillance ship 
(Su, 2012), is selected for studying the 
stochastic responses of ship rolling. The 
parameters of the vessel and the natural roll 
frequency, 0, are given in Table 1.

The modified P-M spectrum, widely used 
for the fully developed ocean waves, is adopted 
in this analysis.  

42 2

4 5 4

5.058
( ) exp( 1.25 )ps

p

g H
S

T
(23)

in which Hs denotes the significant wave 
height, p is the peak frequency at which the 
wave spectrum S ( )  has its maximum, and 
Tp is the corresponding peak period. 

Table 1   List of parameters for the vessel

Parameters Dimensional value

I44+A44  5.540×107 kg m2

B44  5.266×106 kg m2 s-1

B44q  2.877×106 kg m2

  2.017×107 N 
C1  3.168 m 

C3  2.513 m 

0  1.074 rad/s 

Three different sea states, i.e. different 
external excitations, are selected for analyzing 
the stochastic roll responses. The wave spectra 
and rolling excitation moment amplitude per 
unit wave height of the vessel are plotted in 
Figure 1. 

The parameters , ,  in the second-order 
filter (6) and parameters 1, 2, 3, 4 in the 
fourth-order filter (8) can be determined by the 
least square scheme which is available in the 
curve fitting algorithms of MATLAB. The 
parameters in these two linear filters for 
different sea states are presented in Tables 2 
and 3. Moreover, the fitting results of the 
relative wave excitation spectrum for sea state 
1 are shown in Figure 2.
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Figure 1   Wave spectra for different sea states 
and rolling excitation moment amplitude per 
unit wave height 

Table 2   Parameters of the second-order linear 
filter for different sea states 

Sea States Hs (m) Tp (s)
Sea state 1 4.0  11.0  0.495  0.366  0.0432 
Sea state 2 5.0  12.0  0.441  0.364  0.0498 
Sea state 3 6.0  13.0  0.390  0.365  0.0555 

Table 3   Parameters of the fourth-order linear 
filter for different sea states 

Hs (m) Tp (s) 1 2 3 4 1

4.0 11.0 0.934 1.431 0.486 0.310 0.0363 
5.0 12.0 0.924 1.309 0.429 0.249 0.0414 
6.0 13.0 0.931 1.212 0.390 0.202 0.0461 
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Figure 2   Relative wave excitation spectrum in 
equation (4) and filtered spectra for sea state 1 

4.2 Influence of linear filter 

The transfer function between wave 
excitation and roll response in the SDOF model 
(1) is narrow-banded due to the light roll
damping. Thus, the fitting accuracy near the
natural roll frequency, 0, has a significant
effect on the subsequent rolling responses.
However, there is a slight discrepancy between
the spectral density generated by the second-
order filter and the target spectral density in
Figure 2. Therefore, a constant, c, should be
introduced as a correction factor for the filtered
spectral density to decrease the discrepancy in
the critical region near roll frequency 0. The
filtered spectrum (12) can be changed to:

2 2

2 2 2 2

1 ( )( )
2 ( ) ( )nd

cS (24)

The correction factor c is taken to be 1.07 
by considering the mean difference of the two 
spectral densities in the critical frequency 
region. As mentioned in section 3, the joint 
probability density function (PDF) of the roll 
angle and the roll velocity can be obtained 
directly by the 4D PI method. The joint PDF of 
the roll response for sea state 1 is presented in 
Figure 3, while Figure 4 displays the contour 
lines of the joint PDF. 
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Figure 3   Joint PDF of the roll response for sea 
state 1 with Hs=4.0m, Tp=11.0s
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Figure 4   Contour lines of the joint PDF of the 
roll response for sea state 1

It can be observed in Figures 3 and 4 that 
the PDF of the roll response is symmetric. This 
is reasonable since the distribution of the 
random wave excitation, i.e. the filtered white 
noise process, and the vessel properties are 
symmetric with respect to the origin. Moreover, 
the marginal PDF of the roll angle process and 
the marginal PDF of the roll velocity process 
obtained by the 4D PI method and the 4D 
Monte Carlo simulation are plotted in Figure 5 
and 6, respectively.
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Figure 5   Marginal PDF of the roll angle 
process for sea state 1  
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Figure 6   Marginal PDF of the roll velocity 
process for sea state 1 

It is shown in Figures 5 and 6 that the 
Gaussian distribution gives a reasonable 
approximation of the statistics of small-
amplitude roll motions. However, for the high-
level responses, Gaussian distribution under- 
estimates the corresponding low probability 
levels in this region. Moreover, the 4D PI 
method provides nice results for the low 
probabilities, where the distributions obtained 
by the versatile Monte Carlo simulation are 
suffering from uncertainties.

The importance of the correction factor c
for the stochastic roll response is illustrated in 
Figure 7. It can be observed that, the slight 
discrepancy between the second-order filtered 
spectrum and the target spectrum in the critical 
region, which is shown in Figure 2, results in 
noticeable influence on the subsequent roll 
response. If there is no correction factor for the 
second order linear filter, the stochastic roll 
response, will be significantly underestimated. 
In addition, the good agreement of the 
upcrossing rates obtained by 4D PI method and 
6D Monte Carlo simulation (MCS) verify the 
rationality of the correction factor.
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Figure 7   Influence of the correction factor, c,
on the upcrossing rate for sea state 1 with 
Hs=4.0m, Tp=11.0s

The comparisons between the upcrossing 
rates calculated by the 4D PI method and the 
empirical estimation of the upcrossing rates as 
well as the 95% confidence intervals obtained 
by 4D Monte Carlo simulations for different 
sea states can be viewed in Figures 8, 9 and 10. 
It can be readily seen that the 4D PI approach 
yields accurate and reliable results for various 
external excitation cases. Next, the empirical 
estimation of the upcrossing rates computed by 
6D Monte Carlo simulations are plotted in 
these Figures. The good agreement of the 4D 
results and 6D results extracted from Monte 
Carlo simulation verify the rationality of 
introducing the correction factor for all of the 
cases.

0 10 20 30 40 50 60 65

10 6

10 5

10 4

10 3

10 2

10 1

θ [deg]

v+ (ζ
)

4D  PI
4D  MCS
CI

+

CI

6D  MCS

Figure 8   Upcrossing rate for sea state 1 with 

Hs=4.0m, Tp=11.0s (simulation number k
=3000)
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Figure 9   Upcrossing rate for sea state 2 with 
Hs=5.0m, Tp=12.0s (simulation number k         
= 1500) 
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Figure 10   Upcrossing rate for sea state 3 with 
Hs=6.0m, Tp=13.0s (simulation number k          
= 1000) 

4.3 Influence of nonlinear damping 
models 

The roll damping is mainly due to three 
different sources: the free surface radiated 
wave damping, the damping caused by vortex 
shedding and flow separation and finally the 
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viscous friction damping. In general, these 
damping terms are coupled with each other. 
The linear-plus-quadratic damping (LPQD) 
model is one of the most common expressions 
used in the SDOF equation (1). This model is 
given as: 

44 44( ) ( ) ( )qb t b t t (25)

However, the LPQD model is only once 
continuously differentiable and mathematically 
inferior to the infinitely differentiable linear-
plus-cubic damping (LPCD) model. The LPCD 
model is written as: 

3
44 44( ) ( )cb t b t (26)

The least square method is a typical 
approach used to transform the LPQD model 
into the LPCD model. The result of fitting the 
two damping models is shown in Figure 11. 
Moreover, the roll response spectra for the 
dynamic systems with different damping 
models for sea state 1 are plotted in Figure 12.
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Figure 12   Roll response spectra for the LPQD 
and LPCD models for sea state 1

It is illustrated in Figure 11 that the two 
damping models have a good agreement in the 
least-square sense.  Nevertheless, in Figure 12, 
there is still a slight discrepancy between the 
response spectra in the peak region, i.e. the 
critical frequency region near natural roll 
frequency 0. The upcrossing rates, obtained 
by the 4D PI method and the 4D Monte Carlo 
simulation, for the LPQD model versus the 
LPCD model for different sea states are plotted 
in Figures 13, 14 and 15, respectively. 
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Figure 13   Upcrossing rate for different 
damping models for sea state 1  
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Figure 14   Upcrossing rate for different 
damping models for sea state 2  

The 4D PI approach is available to provide 
high-accuracy results for both models when 
compared with the corresponding empirical 
estimations obtained by 4D Monte Carlo 
simulations. However, the corresponding 
upcrossing rates under the same sea sate are 
quite different, even though the two damping 
models match well in the least-square sense. 
The discrepancies between the upcrossing rates 
in the tail regions, suggest that the LPCD 
model might underestimate the extreme 
response of the dynamic system. Therefore, the 
traditional least square method, applied to 
transform the LPQD model into the LPCD 
model, cannot guarantee the accuracy of the 
subsequent stochastic roll response. Further-
more, from the observations in Figures 13-15, 
it can be predicted that when the stochastic 
linearization technique is applied in order to 
linearize the nonlinear damping term (25), even 
more significant discrepancy of the upcrossing 
rate would be observed in the tail region.
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Figure 15 Upcrossing rate for different 
damping models for sea state 3  

5. CONCLUSIONS

In this paper, the 4D path integration
technique and Monte Carlo simulation were 
applied in order to investigate the influences of 
linear filter models and nonlinear damping 
models on the stochastic roll response of a 
vessel in random beam seas. From the 
numerical results and discussions above, some 
of the results can be summarized:

The correction factor, c, is important and 
reasonable to be introduced into the second-
order linear filter. Moreover, the accuracy of 
the filtered spectrum in the critical frequency 
region is crucial for prediction of the response 
statistical. The 6D dynamic system can be 
simplified as a corresponding 4D dynamic 
system with a modified second-order linear 
filter due to the high-accuracy agreements for 
the upcrossing rates. 

The typical least square method results in 
an underestimation of the upcrossing rate when 
it is used to transform a LPQD model into a 
LPCD model. The discrepancies between the 
upcrossing rates generated by different 
damping models should not be ignored.  

It has been shown that the 4D PI approach 
yields reliable results for different damping 
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models and various excitation cases, even in 
the tail regions with low probability levels. 
Therefore, the 4D PI technique can be applied 
for the stochastic analysis of nonlinear ship 
rolling in random beam seas.  
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