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ABSTRACT 

The paper reviews a multi-year research effort for using the split-time method to calculate the 
probability of ship capsizing due to pure loss of stability in irregular waves. The idea of the split-
time method is to separate the complex problem of the probability of capsizing into two less 
complex problems: a non-rare problem that involves the upcrossing of an intermediate level of roll 
and a rare problem that focuses on capsizing after an upcrossing. An initial implementation using a 
dynamic model with piecewise linear stiffness, which can be considered to be the simplest model of 
capsizing in beam seas, led to the concept of critical roll rate as the smallest roll rate at the instant of 
upcrossing that inevitably leads to capsizing. The piecewise linear system allows a closed-form 
solution for the critical roll rate, but a more general approach using perturbations can be used for 
numerical models including advanced hydrodynamic simulation codes. The extension of the split-
time method to pure loss of stability required the consideration of the change of roll stiffness in 
waves and led to calculating the critical roll rate at each upcrossing. A metric of the likelihood of 
capsizing has been defined as the difference between the observed and critical roll rate at the 
instances of upcrossing. The probability of capsizing after upcrossing becomes an extrapolation 
problem for the value of the metric, which can be performed by approximating the tail of the 
metric’s distribution with the Generalized Pareto Distribution. This probability is combined with the 
observed rate of upcrossings to estimate the rate of capsizing in irregular seas. 
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1. INTRODUCTION

The dynamic capsizing of a ship is a
complex phenomenon dominated by the 
nonlinearity of the large amplitude roll 
response, so that linearized mathematical 
models cannot retain the phenomenon’s 
essential properties. Capsizing of an intact ship 
in realistic irregular waves represents an even 
bigger challenge, as this extreme nonlinearity is 
combined with extreme rarity, leaving no 
chance for using brute-force Monte-Carlo 
simulation with hydrodynamic codes of 
sufficient fidelity. 

This challenge has been taken up by the US 
Office of Naval Research (ONR) project “A 
Probabilistic Procedure for Evaluating the 
Dynamic Stability and Capsizing of Naval 
Vessels”. The objective of the project is to 
create a robust theory of probabilistic capsizing 
in irregular waves and a numerical procedure 
based on this theory.

As is well known, an intact ship in realistic 
ocean waves can capsize in a number of 
different scenarios or modes. The physical 
mechanism is different for each scenario, so the 
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theory must be mode-specific. The pure loss of 
stability is, in a sense, a simplest scenario. It 
can be modeled in a basin just with waves, 
assuming that roll damping is high enough to 
prevent parametric roll resonance and the 
forward speed is too low for surf-riding and 
broaching-to. 

The split-time method has been developed 
to simultaneously address the phenomenon’s 
extreme nonlinearity and rarity by providing an 
evaluation of the probability of capsizing from 
a relatively small volume of irregular sea 
response data, perhaps hundreds of hours of 
simulation rather than the millions of hours 
required for a Monte-Carlo approach. 
Numerical implementation has largely been 
carried out using the Large Amplitude Motion 
Program (LAMP), although the procedure is 
fundamentally code-independent. 

The split-time method is being developed in 
phases. The initial phase considered a ship with 
time-invariant stiffness.  While this can be 
considered to be a model of capsizing at zero 
speed in beam seas, the primary objective was 
to develop a basic theory of the method for 
both a simplified mathematical model and 
numerical simulation codes.  The second phase 
of the development has extended the theories to 
the problem of pure loss of stability by 
considering the ship’s change of stiffness as it 
moves in waves.  This paper discusses the 
development of the theory for these initial two 
phases. 

2. BASIC THEORY OF RARE RANDOM
TRANSITIONS

2.1 Piecewise Linear System 

Capsizing can be considered as a transition 
of a ship moving about its stable upright 
equilibrium to motions about its stable “mast 
down” equilibrium. A dynamical system with a 
piecewise linear stiffness is, possibly, the 

simplest way to describe a transition between 
two stable equilibria: 

0)(2
Lf (1)

 is a natural frequency of roll and f*
L is a 

piecewise linear stiffness function. As 
illustrated in Figure 1, equation (1) models the 
phase plane topology of a ship in calm water, 
and has a closed-form solution for each range. 

Figure 1: Phase plane topology of capsize and 
piecewise linear stiffness (Belenky, 1993) 

Adding linear damping and random 
excitation to the dynamical system (1) makes it 
a model of random transition between stable 
equilibria:

)()(2 2 tff EL  (2) 

 is a linear damping coefficient and fE  is a 
stochastic process of roll excitation, modeled 
as:

N

i
iiEiE ttf

1
0 )sin()(  (3) 

Ei are amplitudes, i are frequencies and 0i
are initial phases of the ith component of an 
excitation process presented as a Fourier series 
with N  frequencies. Equation (2) has a known 
closed-form solution in each range: 
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a, , A, B, a2 and 2 are arbitrary constants 
that are dependent on the initial conditions at 
the “switching” of the ranges; d0 and d2 are 
frequencies of the damped oscillation in ranges 
0 and 2, respectively; 1 and 2 are eigenvalues 
for the solution in Range 1. The particular 
solutions for each range are expressed as: 

j
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iijiijj Etptp

1
0 )sin()(  (5) 

j=0, 1, 2 is a range number, pij is an amplitude 
and ij is a phase shift of the ith component of 
the response. Ej is a position of equilibria for 
each range: 

210 ;;0 EEE V  (6) 

v is the angle of vanishing stability. One of the 
eigenvalues for the Range 1 is positive while 
another is negative: 
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kf1 is the slope coefficient for Range 1 taken 
with opposite sign.

2.2 Condition of the Transition 

Whether the transition to the “mast down” 
equilibrium (i.e. capsize) occurs is determined 
by the sign of the arbitrary constant A, as the 
first term in Range 1 in solution (4) is 
unlimited (for non-zero A):

21

0102011 Vm ppA  (8) 

1  and m0 are initial conditions, and 01p  and 
p01 are values of particular solution (5) at the 
instant of crossing from Range 0 into Range 1. 
If A>0, the transition occurs immediately, as 
illustrated in Figure 2. One can express the 
condition of transition in terms of the roll rate 
at the instant of upcrossing m0:

VVmcr pp 2010102  (9) 

Figure 2: General solution of homogenous 
equation (2), the derivative values are 
expressed in rad/s 

Values of a particular solution and its 
derivative at the instant of upcrossing are small 
and can be neglected. The dynamical system 
(4) is a repeller in Range 1, so resonance is
impossible and the particular solution is small;
see Figure 3. The same argument can be
applied to the value of the derivative of the
particular solution in Range 1 (Belenky, 1993).

Figure 3: Amplitudes of frequency-domain 
response of attractor and repeller (Belenky et
al., 2008) 
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Thus, the random transition occurs 
whenever the process upcrosses the threshold 

m0 and its derivative exceeds the critical value 
(9) at the instant of upcrossing. Some
upcrossings will result in the transition, while
other will not. The transition can be seen as an
upcrossing, with its rate reduced by the
probability of the derivative’s exceeding the
critical value (9):

CrmUC P 10  (10) 

where U( m0) is the upcrossing rate through 
the threshold m0.

Formula (10) expresses the main idea of the 
split-time method. The complex problem of 
transition has been divided into two less 
complex problems: characterizing the 
upcrossing of the intermediate level (non-rare 
problem) and finding the probability of 
transition if the upcrossing has occurred (rare 
problem). 

2.3 The Non-Rare Problem 

The random transitions (capsizings) are 
expected to be rare. If one assumes that 
upcrossings of the threshold m0 are also rare, 
then influence from the general solution of the 
homogenous equation on Range 1 can be 
neglected. For this model, the process of the 
particular solution is normal and the rate of 
upcrossing can be expressed as: 
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V

m
mU 2
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2
1 2

0
0  (11) 

0pVV  and 0pVV  are the variances of the 
particular solution and its derivative in Range 0, 
and can be found from formula (5): 

N

i
iip

N

i
ip pVpV

1

2
00

1

2
00 ;  (12) 

The calculation of these variances does not 
present a problem. 

2.4 The Rare Problem 

The difference between the observed and 
critical values of the derivative is the metric of 
the transition’s likelihood. Since the critical 
value for the derivative is constant, it is only 
necessary to find the distribution of the value 
of the derivative at upcrossing. The original 
derivation was published in Appendix 3 of 
Belenky et al. (2008), while the abridged and 
updated version is given below. 

The upcrossing event is defined as follows 
(Kramer and Leadbetter, 1967): 
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The probability that U occurs at time t is 
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),(pdf is the joint probability distribution 
function of the process and its derivative. 

Consider a random event V such that: 
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A random event that the events U and V occur 
simultaneously: 
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The probability that U and V occur 
simultaneously at time t is: 
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By definition, the Cumulative Distribution 
Function (CDF) is: 
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Differentiation of (18) yields the pdf of the 
derivative value at the instant of upcrossing: 

0
0

101
01

),(

),(
)|(

dpdf

pdf
pdf

m

m
m  (19) 

If upcrossings are rare, the response process 
and its derivative can be assumed to be normal. 
This also means that they are independent, as 
the stationary process is not correlated with its 
first derivative and two uncorrelated normal 
processes are independent. Substitution of the 
normal distribution into (19) yields: 
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Formula (20) is the Raleigh distribution. 

The distribution of the derivative at the 
instant of upcrossing is different from the 
distribution of the derivative in general. The 
distribution “in general” is obtained if the 
sampling is done in “any” (or random) instant. 
The instant of upcrossing of the primitive is not 
a random instant. A condition when the 
upcrossing is occurred is expressed by equation 
(13). Thus, the distribution of the derivative at 

upcrossing is not equivalent to the distribution 
of the derivative “in general”. 

Finally, the conditional probability of the 
transition after upcrossing has occurred is 
derived using equations (9) and (20): 

V
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Equation (20) is the solution of the rare 
problem. 

2.5 Probability of  Rare Transitions 

The combination of equations (10) and (20) 
yields the solution for the rate of rare random 
transitions:
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For the ship-like dynamical system with 
piecewise linear stiffness (Figure 1), the 
domain of attraction to the capsized 
equilibrium is larger than for the one with 
“mast up”. Thus, while the transition to 
capsized equilibrium is rare, the probability of 
transition in the opposite direction can be 
neglected. It is safe to assume that once 
transition has occurred, the dynamical system 
will stay capsized. That means that any two 
transitions are independent, as they must occur 
in two independent records. This means the 
transition meets the requirement of Poisson 
flow (Sevastianov, 1963, 1994), which leads to 
the following formula for the probability of 
transition (capsizing) during a given time T:

TTP Cexp1)( (22)

2.6 Summary of the Basic Theory 

The original solution for random rare 
transitions in a dynamical system with 
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piecewise linear stiffness was found in the late 
1980s (Belenky, 1993). It has been applied to 
the probability of capsizing of a ship in beam 
wind and seas (Paroka and Umeda, 2006; 
Paroka et al., 2006). Some verification of self-
consistency was carried out within the 
framework of the ONR project, which resulted 
in the refinement of the solution; the 
distribution of the derivative value at the 
instant of upcrossing was found to be Rayleigh 
(Belenky et al., 2008). 

The dynamical system with the piecewise 
linear stiffness likely represents the simplest 
model of a rare random transition between two 
stable equilibria. Nevertheless, considering this 
simple model, the following conclusions can be 
reached: 
• A “critical derivative” (“critical roll rate”)

can be defined as the value of the derivative
which, if exceeded at upcrossing, inevitably
leads to transition (capsizing)

• The difference between the observed and
critical derivatives (roll rates) can be used as
a metric of the likelihood of transition
(capsizing)

• The rate of transitions (capsizings) can be
defined as the rate of upcrossings of a
maximum stiffness level in which the
observed derivative (roll rate) exceeds the
critical derivative (roll rate)

• The calculations of upcrossings and critical
roll rate can be considered separately as non-
rare and rare problems, respectively.

3. NUMERICAL EXTENSION OF THE
BASIC THEORY OF RARE RANDOM
TRANSITIONS

3.1 Toward a Time-Domain Solution 

The dynamical system with piecewise 
linear restoring (2) yields a closed-form 
solution for the probability of random rare 
transition (21), which is the simplest 
mathematical model of a ship capsizing in 

waves. Is it possible to apply the split-time 
method if a dynamical system is represented by 
a time-domain hydrodynamic simulation code? 

The non-rare problem can be readily solved 
in the time domain, as long as the code can 
provide a sufficient statistical sample. If the 
intermediate threshold is set appropriately, one 
can count the upcrossings and estimate the 
upcrossing rate and an average number of 
events per unit of time.  

The rare problem can also be recast in the 
time domain. If one assumes that roll stiffness 
of the dynamical system does not change in 
time and can be represented by the calm water 
GZ curve, then the critical roll rate can be 
found by an iterative set of numerical 
simulations. The calculations start at the 
intermediate level and the initial roll rate is 
perturbed for each run until capsizing is 
observed. The iteration scheme will create a 
picture similar to the one in Figure 2. 

The distribution of the roll rate at 
upcrossing can be estimated statistically. 
Because capsizing is a rare event, the observed 
roll rates are expected to be smaller than the 
critical roll rate. The solution of the rare 
problem in the numerical case therefore 
involves statistical extrapolation, so only the 
tail of the distribution needs to be modeled. 
Generalized Pareto Distribution can be used for 
this purpose. 

3.2 Numerical Non-Rare Problem 

The non-rare problem will be solved using 
a set of time-domain simulations in “random” 
realizations of stationary irregular waves, 
which will typically be derived by discretizing 
an ocean wave spectrum into a set of 
component wave frequencies with pseudo-
random phases. For the upcrossing rate to be 
estimated correctly, this model of wave 
excitation should be statistically representative 
for the duration of each record. To ensure this, 
the frequency set must be selected so as to 
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avoid a possible self-repeating effect (Belenky, 
2011). Since long records require a very large 
number of incident wave frequencies to avoid 
this effect, it is generally more efficient to use a 
number of relatively short records – about 30 
minutes each – than a smaller number of long 
records. 

Following the approach developed for the 
model with piecewise linear stiffness, the level 
of the intermediate threshold is set to the 
maximum of the roll restoring (GZ) curve, 
where the slope of the curve becomes small 
enough that the corresponding instantaneous 
frequency does not support resonance under 
realistic wave excitation. Wave excitation will 
then add little energy to the dynamical system 
after this threshold is exceeded, which justifies 
the solution of the rare problem for the critical 
roll rate value without excitation, i.e. in clam 
water.

Once the non-rare simulations are 
completed, the upcrossing rate is estimated as: 

tN
N

T

Uˆ (23) 

NU is the observed number of upcrossings, NT
is total number of data points in all records, and 

t is the time increment (data sampling rate), 
which is assumed to be the same for all records. 

This estimate is a random number and 
requires an evaluation of statistical uncertainty. 
Assuming independence of upcrossings (for the 
purposes of statistical uncertainty assessment 
only), the occurrence of an upcrossing at a 
particular time step can be seen as a Bernoulli 
trial. The number of observed upcrossings then 
has a binomial distribution: 

UTU NNN

U

T
U pp

N
N

Npmf )1(  (24) 

p is a parameter of binomial distribution that 
has the meaning of the probability of a 
“success” (i.e. upcrossing) at a particular time 
increment. It can be estimated as: 

T

U

N
Np̂ (25)

The boundary of the confidence interval 
corresponding to a confidence probability P
can be computed as: 

tN
pPQ

uplow
T

Bin ˆ|)1(5.0
,ˆ  (26) 

QBin is the quantile of the binomial distribution. 
Its calculation, however, may encounter 
numerical difficulties as the total number of 
points NT may be large. If this is the case, a 
normal approximation of the binomial 
distribution can be used with the following 
variance estimate: 

tN
raV

T

ˆ1ˆˆˆ (27)

The boundaries of the confidence interval are 
then expressed as: 

ˆˆˆ,ˆ raVKuplow  (28) 

K  is 0.5(1+ P ) quantile of a standard normal 
distribution. Further details may be found in 
Belenky et al. (2008) and Campbell and 
Belenky (2010). 

3.3 Numerical Rare Problem 

As described above, the numerical solution 
of the rare problem starts with an iterative set 
of simulations with different initial conditions 
to compute the critical roll rate at upcrossing 
that leads to capsizing. These simulations must 
include an accurate calculation of the restoring 
at large roll angles. 

The numerical solution of the rare problem 
was implemented using the Large Amplitude 
Motion Program (LAMP). LAMP is a mature 
hybrid time-domain code (Lin and Yu, 1990) 
incorporating a number of hydrodynamic 
modeling options of different fidelity. 
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Figure 4 shows a sample rare solution using 
a simplest option based on hydrostatics only 
solution (LAMP-0) with the following features:  

• 3-D hydrostatics up to the instantaneous
waterline

• Does not solve the wave-body disturbance
problem

• “Tunable” terms for viscous damping and
wave interaction effects (e.g. added mass)

• CPU time per 2.5-minute simulation: ~3
seconds.

Figure 4: Calculation of critical roll rate via 
iterative numerical simulation (LAMP-0) 

Figure 5 shows the next level of 
complexity: the approximate body-nonlinear 
solution (LAMP-2). LAMP-2 is characterized 
by the following features: 

• 3-D hydrostatics up to the instantaneous
waterline

• Solves the wave-body disturbance potential
over the mean wetted hull surface

• “Tunable” damping terms for viscous
effects

• CPU time per 2.5-minute simulation: ~2
minutes (Direct) or ~8 seconds (pre-
computed impulse response functions for
disturbance potential).

Figure 6 shows the complete body-
nonlinear solution (LAMP-4), which is 
characterized by the following features: 

• 3-D hydrostatics up to the instantaneous
waterline

• Solves the wave-body disturbance
potential over the instantaneous wetted
hull surface

• “Tunable” damping terms for viscous
effects

• CPU time per 2.5 minute simulation: ~3
hours.

Figure 5: Calculation of critical roll rate via 
iterative numerical simulation (LAMP-2) 

Figure 6: Calculation of critical roll rate via 
iterative numerical simulation (LAMP-4) 

The next step in solving the rare problem is 
estimating the probability of capsizing after 
upcrossing. It is associated with exceedance of 
the critical value by the roll rate at the instant 
of upcrossing. Its distribution is not known, 
however, and must be modeled based on the 
time-domain results. If a good model were 
available for the joint distribution of roll and 
roll rate, formula (19) could be used to derive 
the distribution of the roll rate at the instant of 
upcrossing; however, no such model is 
available. Instead, one can attempt to directly 
model this distribution using the upcrossing 
data. As the critical roll rate is relatively large, 
only the tail of the distribution needs to be 
modeled. Since direct observation of capsizing 
is not expected, modeling the tail of the 
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distribution is, in fact, a statistical extrapolation 
problem. 

The mathematical background of statistical 
extrapolation is based on two extreme value 
theorems (Coles, 2001): 

• Fisher-Tippet-Gnedenko theorem states
that the largest value of independent
identically distributed (IID) random
variables asymptotically tends to the
Generalized Extreme Value (GEV)
distribution

• Pickands-Balkema-de Haan theorem states
that the tail of IID random variables can be
approximated with the Generalized Pareto
Distribution (GPD).

The pdf of the GPD is expressed as: 

0,

;exp1

0,

,0,

;11

)(

1

1

1

1

11

1

1

kif

k
k

orkif

k

pdf

k

 (29) 

k is the shape parameter,  is the scale 
parameter, and  is the threshold above which 
GPD is applicable.

These three parameters must be estimated 
in order to approximate the tail. Belenky et al.
(2014) describes the technique for fitting the 
GPD for the more complex case that accounts 
for stability variation, which will be reviewed 
later in this paper. One can see that the constant 
stiffness is the particular case where the critical 
roll rate remains the same for each upcrossing. 
There seems to be no reason to believe that the 
fitting technique will not work for this 
particular case, as it worked for more general 
case. 

The fitting procedure consists of the 
following steps (see Belenky et al. (2014) for 
details):

• Set a series of thresholds  for the
observed roll rates at upcrossing – this
threshold is the value of the roll rate at
which the GPD becomes valid (i.e. the
start of the tail) and is not to be confused
with the intermediate threshold for roll
angle

• Use the log-likelihood method (Grimshaw,
1991) to find the estimate of shape and
scale parameter for each threshold 

• Using the Delta method, find variances
and covariances of the shape and scale
parameter for each threshold  (Boos and
Stefanski, 2013)

• Find the minimum threshold  providing
applicability of GPD, using techniques
described in Coles (2001) and based on
Reiss and Thomas (2007).

The probability of capsizing if the threshold
 is exceeded is then expressed as: 

otherwise

kif

k

P
cr

k

cr

0

ˆˆ

ˆˆ1

ˆ

1ˆ
1

1  (30) 

The probability (30) is computed using 
estimates, which are random numbers, so the 
result of (30) is also an estimate and a random 
number. It can also be considered as the most 
probable value, because the scale and shape 
parameters were estimated with the log 
likelihood method, i.e. they are the most 
probable values for the parameters.  

The next step is evaluating the confidence 
interval for the probability estimate (30). This 
is done by considering it as a deterministic 
function of random arguments. Assuming a 
normal distribution for the estimates of shape 
parameter and the logarithm of scale parameter 
(scale parameter is always positive), the 
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following formula was derived for the 
distribution of the estimate of probability of 
capsizing after upcrossing: 

dk
P
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P

kkf

Ppdf

crk
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k
cr

N
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2
1

1
1

2

1

11

11
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where fN (k,ln( ) is a normal joint distribution 
of the shape parameter and the logarithm of the 
scale parameter. The boundaries of the 
confidence interval are computed with the 
quantiles of the distribution (31). The most 
probable value of P1 may be zero; however, 
this does not necessarily mean that the upper 
boundary of the confidence interval is zero. 

The GPD distribution approximates a tail of 
the distribution when it exceeds the threshold .
Equation (31) therefore estimates a conditional 
probability under the condition that the 
threshold was exceeded, so the solution of the 
rare problem is expressed as: 

11
ˆˆ P

N
N

P
U

Cr (32)

N  is the number of upcrossings when the roll 
rate has exceeded the threshold . The 
complete estimate of the capsizing rate is: 

11
ˆˆˆ P

tN
N

P
N
N

tN
N

TUT

U
C  (33) 

The number of upcrossings of the 
intermediate threshold has disappeared from 
equation (33). Thus, the choice of the 
intermediate threshold can only affect the 
independence of the upcrossings as a condition 
of the GPD’s applicability. 

The fraction in equation (33) is the estimate 
of the rate of events: upcrossings of the 
intermediate level when the roll rate has 
exceeded  The confidence interval of this 
estimate can be computed using formula (26), 
but NU must be substituted N :

T

T

Bin

N
N

p

tN
pPQ

uplow

ˆ

ˆ|)1(5.0
,ˆ 1

 (34) 

P 1 is the “new” confidence probability; it 
reflects the fact that the estimate of capsizing 
rate is a product of two random numbers, each 
of which has its own confidence interval. As 
these numbers are independent,  

PP 1 (35)

The confidence interval of the estimate P1 must 
therefore use P 1 as a confidence probability: 

)1(5.0,ˆ
111 PQuplowP P  (36) 

QP1 is the quantile of the distribution (29). 
Finally, the boundaries of the confidence 
interval for the capsizing rate estimate (33) are: 

1

1

ˆ)ˆ()ˆ(

ˆ)ˆ()ˆ(

Phighhighhigh

Plowlowlow

C

C  (37) 

3.4 Summary for the Numerical Extension 
of the Basic Theory 

The numerical extension of the basic 
probabilistic theory of capsizing was published 
in Belenky et al. (2008), where most of the 
numerical problem’s specifics were formulated. 
However, the problem of modeling the 
distribution of the roll rate remained without 
practical solution until the applicability of the 
GPD was fully appreciated (Belenky et al.,
2014).

The extension demonstrated that the split-
time method is applicable for a dynamical 
system presented by an advanced 
hydrodynamic simulation code instead of an 
ordinary differential equation (ODE). The 
simplest numerical extension involves: 
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• Assuming that the roll stiffness of the
dynamical system can be modeled by the
GZ curve in calm water

• Finding the critical roll rate by a series of
iterative simulations starting from an
intermediate threshold with different rates;
the critical roll rate is defined as the largest
roll rate not leading to capsizing

• Modeling the tail of the distribution of roll
rate at upcrossing with GPD

• Evaluating the statistical uncertainty for
the estimates of upcrossing rate and
probability of capsizing after upcrossing.

The transition to the numerical solution
involves working with time-domain data and 
requires statistical methods to handle the 
results of numerical simulation, including the 
modeling of distributions and the assessment of 
statistical uncertainty. 

4. BASIC THEORY OF RARE RANDOM
TRANSITIONS WITH RANDOM
STIFFNESS

4.1 Piecewise Linear System 

The next step is to find out if the 
assumption of time-invariant stiffness may be 
abolished and if a solution can still be obtained 
in the simplest case with random stiffness. 
Consider the dynamical system (2), but with 
the stiffness in Range 1 now time dependent; 
its intercept is random, but the slope remains 
the same, as shown in Figure 7. 

Figure 7: Time-variant piecewise linear 
stiffness 

The variation of the stiffness in waves can 
be caused by the wave pass effect and ship 
motions. Both phenomena have certain inertia, 
so the parameters of time-varying stability are 
described by stochastic processes rather than 
random variables. Belenky et al. (2011) 
describes a simple mathematical model where 
the intercept in Range 1 is a linear function of 
heave:

)(),(*2 2 tff EG  (38) 

G is the heave displacement modeled with a 
linear ODE. The boundary m between Ranges 
0 and 1 in equation (38) now depends on time. 
However, within Range 0 equation (38) is 
identical to equation (2). The difference caused 
by the stiffness variation in Range 1 makes 
equation (38) appear as follows: 

)()(

2

01
22

1
2

tfktk

k

EvfGb

f  (39) 

• Coefficient kb reflects the dependence
of the intercept on the heave displacement G.
The term containing G is the only difference
between (39) and (2).

Taking into account that the slope 
coefficient kf1 has been taken with the opposite 
sign, equation (39) describes a repeller and its 
general solution is: 

01

21

)(
)exp()exp()(

vtp
tBtAt

 (40) 

The difference between solutions (40) and (4) 
in Range 1 is the particular solution that now 
includes the influence of the random variation 
of stiffness. 

4.2 Condition of Transition

The homogenous part of equation (39) does 
differ from the homogenous part of equation 
(2) in Range 1, but the condition of transition at
the instant of upcrossing t1 is still the same:

f*( )

m1m0

v0

mt

Range 1 
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)()(0)( 111 tttA cr  (41) 

The critical roll rate is still defined by the 
same formula (9), but the particular solution 
can no longer be neglected. As a result, the 
critical roll rate becomes a function of time, i.e.
it is a stochastic process: 

)()()()( 1012 tptptt vmcr  (42) 

4.3 Non-Rare Problem

The boundary between Ranges 0 and 1 is 
now time-dependent, so it makes sense to 
formulate the non-rare problem for a difference 
between the boundary and the roll motion, 
introducing a new stochastic process:

0)()()( mm tttx (43) 

Upcrossing of the process x(t) through the 
threshold m0 makes the switch from Range 0 
to Range 1. 

The time-dependent boundary m(t) is a 
linear function of the heave motion, which is 
also linear. A Fourier series presentation for 
x(t) is available from Belenky et al. (2011), 
which allows the upcrossing rate to be 
expressed using formula (11): 
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2
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0
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xx VV and  are variances of the process x(t) and 
its derivative. 

4.4 Rare Problem

To formulate the rare problem, consider a 
difference between the critical roll rate and the 
instantaneous roll rate y(t):

 )()()( ttty cr (45)

The process y(t) is a linear combination of 
normal processes and can be presented with a 
Fourier series (Belenky et al., 2011). The 
capsizing event is associated with a negative 
value of y at the instant of upcrossing. One 
therefore needs to find the distribution of the 
process y(t) at the instant when the dependent 
process x(t) has an upcrossing. The problem is 
similar to the one considered in Section 2.4, but 
instead of a derivative, a dependent process is 
considered. 

To derive the distribution of the process y(t)
at the instant of upcrossing, consider a random 
event W:

CytyW )( (46)

The events of U (defined by equation (13), but 
re-formulated for the process x(t)) and W occur 
simultaneously: 
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 (47) 

The probability that U and W occur
simultaneously at time t is: 
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By definition, the CDF is: 
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Differentiation of (49) yields a pdf of the 
value of the dependent process at the instant of 
upcrossing:

xdxxpdfx

xdyxxpdfx
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C

0
0

0
0

,

,,
)(  (50) 

For the considered case of a dynamical 
system with piecewise linear term, all of the 
processes are normal and their mutual 
dependence is completely described by the 
appropriate covariance moments. This 
information is available as all of these 
processes are presented by Fourier series. The 
integrals in equation (50) can be evaluated 
symbolically: 
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• xyxxyxm || and  are the conditional mean 
and the conditional standard deviation of the 
derivative of the process x(t) if the processes 
x(t) and y(t) took particular values. Note that 
the conditional mean is a function of the value 
of the process y at upcrossing, while the 
standard deviation is a constant; erf is the 
standard error function (see Belenky et al. 
(2013) for details). 

The probability of capsizing after an 
upcrossing event is expressed as: 

0

)(0 CCC dyypdfyP  (52) 

Equation (52) completes the solution of the 
rare problem. 

4.5 Probability of  Rare Transitions 

The final result of the rate of transitions 
(capsizes) can only be resolved using 
quadratures:
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• xx and  are the standard deviation of 
process x and its derivative. 

Most of the basic theory of rare transitions 
with random stiffness was published in 
Belenky et al. (2010, 2011). The assumption of 
the independence of the process x and its 
derivative, which appeared in those 
publications, was abolished in order to obtain a 
more general solution (Belenky et al., 2013,
2013a). The latter works also contain a closed-
form solution to (51), which was not available 
in the earlier publications.  

The main outcome of the basic study of rare 
transitions in dynamical system with random 
stiffness is that the critical roll rate becomes 
time variant and random as well. As part of this 
study, the distribution of the value of 
dependent process at the instant of upcrossing 
was derived. 

5. NUMERICAL EXTENSION OF BASIC
THEORY OF RARE RANDOM
TRANSITIONS WITH RANDOM
STIFFNESS

5.1 Towards a Time-Domain Solution 

A comparison of a basic theory of random 
transition (Section 2) with its numerical 
extension (Section 3) shows a commonality in 
their approaches but some significant 
differences in technique. The understanding 
that numerical techniques may be quite 
different from the solution for the simpler 
piecewise linear system came from a number of 
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studies, where “theoretical” methods were 
attempted in a more direct way. 

The calculation of instantaneous GZ curve 
in waves was described in Belenky and Weems 
(2008). Belenky et al. (2010) describe a 
method of tracking the maximum of the GZ 
curve in waves. However, an attempt to use the 
theoretical formula for upcrossing rate, as 
proposed in Belenky et al. (2008), showed a 
significant discrepancy from statistical 
estimates for stern quartering seas. This 
discrepancy was not observed in beam seas. 

The reason for this discrepancy is the 
dependence between roll angles and roll rate in 
stern quartering seas (Belenky and Weems, 
2012; Belenky et al., 2013). The roll angles 
and rates are not correlated (see, for example, 
Bendat and Piersol, 1986). However, the 
absence of correlation means independence 
only for a normal process. Since large-
amplitude roll motions may be not normal, 
independence cannot be assumed based on an 
absence of correlation. In this case, dependence 
can be characterized through the joint moments 
of higher order, say the fourth joint moment 
(covariance is the second joint moment). It is 
possible that the dependence is somehow 
related with stability variation in stern 
quartering seas, as it was not observed in beam 
seas. 

The probabilistic properties of the elements 
of GZ curve in waves was found to be quite 
complex (Belenky and Weems, 2008). As a 
result, the modeling of a threshold distribution 
is difficult. Difficulty is further increased by 
the necessity to include all dependencies in 
order to get the joint distribution required in 
formula (50). Even if such a distribution fit is 
proposed, it may be reasonable only near the 
mean value, while the distribution needs to be 
evaluated on the tail. It was concluded that this 
approach did not offer a practical solution. 

The difficulties fundamentally originated 
from the necessity to model tails of multi-
dimensional distributions. These distributions 

are needed for characterizing the values at the 
instant of upcrossing. Why not get this 
information directly from the simulated data? 

This simple question has led to 
understanding that numerical methods may be 
quite specific and should be based on direct 
data analysis, i.e. statistics. This motivated a 
revision of the original work on the evaluation 
of probability of capsizing in beam seas. The 
description in Section 3 reflects the authors’ 
current understanding of how the problem 
should be handled, which has evolved 
significantly since its first publication in 
Belenky et al. (2008).

5.2 Numerical Non-Rare Problem 

The formulation of the non-rare problem for 
the case of time-dependent stiffness is almost 
identical to the case of constant stiffness. 
However, the requirement of the independence 
of upcrossings can be removed. Dependent 
crossing events will be addressed as a part of 
rare problem as will be described in the next 
subsection. As a result, the choice of the 
intermediate threshold becomes a matter of 
computational efficiency only. 

5.3 Numerical Rare Problem 

The solution for a dynamical system with 
random piecewise stiffness has shown that the 
critical roll rate depends on time. To account 
for the stability changes in wave in the 
numerical case, the critical roll rate is 
calculated at each upcrossing, and the effect of 
the wave is included in the rare simulations. 
The calculations start from the instant of 
upcrossing; and roll rate is perturbed until 
capsizing is reached; see Figure 8. 
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Figure 8: Calculation of critical roll rate

A detailed discussion of this algorithm,
further referred as the Motion Perturbation 
Method (MPM), can be found in Spyrou et al.
(2014). A particularly important point is how 
MPM is related to the definition of motion 
stability and the classic definition of ship 
stability given by Euler (1749). The result of 
the MPM calculation is a value of the metric of 
likelihood of capsizing (Belenky et al., 2014): 

UCriUii Niy ,...,1;1  (54) 

• Crj  is the critical roll rate calculated for
the ith upcrossing, and Ui  is the roll rate
observed at the ith upcrossing.

The next step should be the GPD 
extrapolation of the metric y to find the 
probability of exceeding 1, which is the value 
associated with capsizing per equation (54). 
However, GPD requires independent data and 
the independence of upcrossings is no longer 
required when choosing the intermediate 
threshold. To resolve this, the dependence or 
independence of successive upcrossings must 
be determined. 

If capsizing does not occur, the perturbed 
time history returns to the unperturbed state 
after some time (“time of convergence”); see 
Figures 9. If the next upcrossing occurs within 
this time of convergence, it is considered to be 
dependent. If the effect of perturbation has no 
further influence, the next upcrossing is 
considered to be independent; see Figure 9. 
The critical roll rate is calculated for all 
upcrossings, but only the largest value in each 

set of dependent upcrossings is retained for 
further processing; see Spyrou et al. (2014) for 
further details.

Figure 9: Dependent and independent 
upcrossings

The procedure for GPD extrapolation is 
similar to the constant stiffness case that was 
reviewed in Section 3.3. The only difference is 
that metric y is extrapolated and the target 
value associated with capsizing equals 1. 

5.4 Initial Validation 

As with any analytical method, validation is 
required if the method is to be put to practical 
use. But what would constitute validation of 
the split-time method of probability of 
capsizing? The split-time method is essentially 
the method of extrapolation; it is intended to 
evaluate the probability of capsizing based on a 
limited simulation data set. Thus, the validation 
of extrapolation is the more general question. 

A statistical extrapolation method can be 
considered valid if its prediction is identical to 
value directly estimated from a sample. To do 
this, the sample must be large enough to 
support the estimation of the predicted event. 
To estimate the probability of capsizing, a 
sample must contain a number of capsizes so 
that the rate of capsizing can be estimated by 
direct counting. The extrapolation can then be 
applied to one or more small sub-samples of 
the data, each of which may or may not contain 
any capsizing events. If the estimates from the 
extrapolations and direct counting match, then 
the extrapolation method is valid. 
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While this idea seems straightforward, 
many issues need to be resolved to create a 
procedure of extrapolation. The development 
of this procedure is described by Smith and 
Campbell (2013), Smith (2014), and Smith et 
al. (2014) and summarized in Smith and 
Zuzick (2015). A key idea of the procedure is 
that the validation must be repeated 
systematically for the same condition in order 
to verify the confidence interval as well as for 
different speed, heading and wave environment 
in order to verify the robustness of the method. 

Another question is how to get a sample 
that is large enough to capture such a rare event 
while retaining the essential nonlinear physics? 
For realistic wave conditions, millions of hours 
of simulation may be required to see capsizing. 
A particular problem is how to model stability 
variations in waves that play the central role in 
capsizing caused by pure loss of stability. ODE 
solvers may be fast enough to provided 
required simulation time, but ODE models may 
be quite questionable in terms of reproducing 
the stability variation. 

For the present study, simulations were 
made with a 3 degree-of-freedom (heave, roll, 
pitch) time-domain simulation code which 
incorporates a novel volume-based calculation 
of the body-nonlinear Froude-Krylov and 
hydrostatic pressure forces. The algorithm is 
almost as fast as an ODE solver, but it captures 
the key features of the nonlinear wave forcing 
and restoring, allowing large, realistic irregular 
sea motion data sets to be generated. 
Description of the algorithm, implementation 
and verification is available from Weems and 
Wundrow (2013) and Weems and Belenky 
(2015).

The code was used to generate 1,000,000 
hours of motion data for the ONR Topsides 
Tumblehome hull in random realizations of 
large, irregular stern quartering seas. 157 
capsizes were observed, which allows a “true” 
value to be estimated. The split-time method 
was applied to 50 different sub-sets of the data, 
each of which consisted of 100 hours of data. 

The observed and extrapolated capsizing rates, 
with confidence intervals, are plotted in Figure 
10. The percentage of successful extrapolations
is 96%, which is very close to 95% of
confidence probability. Details of the
validation can be found in Belenky et al.
(2014).

5.5 Summary on the Numerical Extension of 
the Basic Theory for Random Stiffness 

Numerical extension of the basic theory of 
random transition in a dynamical system with 
random stiffness was initially published in 
Belenky et al. (2013), with an exponential 
distribution as a model for the tail of the metric. 
Subsequent publications (Belenky et al., 2014;
Spyrou et al., 2014) include the switch to GPD, 
which has led to a successful initial validation. 

The development of this numerical 
extension can be summarized as follows: 

• It is possible to estimate the probability of
capsizing numerically without any
assumption on roll stiffness

• The problem can be solved by GPD
extrapolation of the metric of likelihood of
capsizing (equation 54)

• The metric fully accounts for the
nonlinearity of dynamical system; it
contains a critical roll rate computed by
perturbations

• The metric can be seen as an
implementation of both the classical
definition of ship stability and the general
definition of motion stability

• Roll rate and angles may be dependent in
stern quartering seas, while remaining
uncorrelated.

The method has been successfully tested
using a large volume of ship motion generated 
with a volume-based 3-DOF simulation code. 
This test provides a very promising but limited 
validation of the method, as the results of the 
3-DOF simulation should be considered to be a
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qualitatively rather than a quantitatively correct 
representation of ship capsizing. The numerical 
extension cannot be considered complete until 

it has been fully implemented and validated 
with a more complete time-domain simulation 
code such as LAMP. 

Figure 10: Results of initial validation performed for 50 validation data sets for ONR tumblehome 

6. CONCLUSIONS AND FUTURE
WORK

This paper has reviewed work under the
ONR project “A Probabilistic Procedure for 
Evaluating the Dynamic Stability and 
Capsizing of Naval Vessels”. The review was 
limited to the results related to pure loss of 
stability, without consideration of effects from 
wind, surge, sway, or yaw. The main focus of 
the study was on the effect of random stability 
variations in waves. The research was reviewed 
in four following steps: 

• Basic theory of rare random transitions
• Numerical extension of the basic theory of

rare random transition
• Basic theory of rare random transition in a

dynamical system with random stiffness
• Numerical extension of the theory of rare

random transition in a dynamical system
with random stiffness.

The result of the study is a procedure of
physics-based statistical extrapolation using a 
limited data set from nonlinear time-domain 
numerical simulation. The procedure consists 
of the following steps: 

• Prepare an extrapolation data set of
simulation data; typically about 100 hours
of total duration and consisting of a
number of records approximately 30 
minutes each 

• Set an intermediate threshold providing a
reasonable number (thousands) of 
upcrossings to be observed 

• For each upcrossing, use perturbation
simulations to find the critical roll rate
leading to capsize, and then use the
difference between the observed and
critical roll rate to calculate the value of
the metric of the likelihood of capsizing;
then remove dependent data from the
dataset

• Fit GPD with the metric data; evaluate the
estimate of the capsizing rate and its
confidence interval.

So far, this procedure has had a very limited
validation for one condition and has not been 
fully implemented with LAMP or other 
advanced hydrodynamic code. The following 
are the next steps in the development of the 
method: 
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• Bring the validation to reasonable
completion by considering more
conditions

• Address implementation issues related
with the consideration of 6 DOF in the
solution of the non-rare and rare problems

• Consider the inclusion of hydrodynamic
diffraction and radiation forces in the
solution of the rare problem.
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