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Abstract

We derive analytical approximations for the probability distribution function (pdf) for the
response of the Mathieu equation with random parametric excitation at the main resonant
frequency. The inclusion of stochastic excitation renders the otherwise straightforward response
into a system exhibiting intermittent resonance. Due to the random amplitude term the system may
momentarily cross into the instability region, triggering an intermittent system resonance. As a
result, the statistics of the response are characterized by heavy-tails. We develop a mathematical
approach to study this problem by conditioning the density of the system
response on the occurrence of an instability, and analyze separately the stable and the unstable
regimes.
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1 INTRODUCTION for { «< 1 the instability region near n = 1 is of
greatest practical importance (Lin & Cai, 1995,
In this work we consider a Mathieu type ~ Nayfeh & Mook, 1984). In the following we

stochastic differential equation of the form consider (1) tuned to the important resonant
¥(t) + 2e{owox(t) + w3 (1 + frequency 2 = 2w,. The case, where the
eB(t)sint)x(t) = Ve&(t), (1) frequency is slightly detuned can be

generalized following exactly the same
approach, but for simplicity of the presentation
we consider no detuning. In realistic systems
the parameter A in (2) that controls the stability
of the system for a fixed £2 and {, may be a
random quantity and not necessarily
deterministic. If this is the case, intermittent
resonant instabilities may occur due to the
randomly varying parameter S(t) in(1)
¥(t) + 2{owox(t) + wé(1 + Asinf2t)x = 0,(2) crossing momentarily into the instability region
which induces a short-lived large amplitude
spike in the response after which the system is
relaxed back to its stable response (Fig. 1). In
other words, we are interested in the case
where [(t) is on average stable, but can
momentarily transition into the instability
region due to randomness. From an
applications standpoint ignoring randomness in

where {, is the damping ratio, w, is the
undamped natural frequency of the system, (2
is the frequency of the harmonic excitation
term and B(t) its (random) amplitude, € is a
small positive parameter, and &(t) is a
broadband  weakly  stationary = random
excitation. It is well known that the Mathieu
equation

displays instability due to resonance depending
upon the parametric excitation frequency and
amplitude parameters in the (£, 1) plane. Near
/2w, = 1/n for positive integers n, we have
regions of instabilities, with the widest
instability region being for n = 1. Damping
has the effect of raising the instability regions
from the /2w, axis by 2(2¢)*/". Therefore,

1041



p o

Proceedings of the 12™ International Conference on the Stability of
Ships and Ocean Vehicles, 14-19 June 2015, Glasgow, UK.

B(t), woud severely underestimate the
probability for extreme events since the
corresponding averaged equation would lead to
Gaussian statistics, whereas the original system
features heavy-tailed statistics. It is the purpose
of this work to quantify the probabilistic
response of (1), in other words the probability
distribution function (pdf), for the case when
B(t) is a random quantity. The strategy we
employ utilizes a decomposition of the
probabilistic system response into stable and
unstable regimes, which are then individually
analyzed and combined to construct the full
distribution of the response.
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Figure 1 Sample realization of the Mathieu
equation (3) (top). The parametric amplitude
stochastic excitation term [((t) (bottom)
triggers intermittent resonance when it
crossing above or below the instability
threshold (dashed lines).

2 PROBLEM STATEMENT

We consider the following equation

£(t) + 2¢owox () +
w§(1+ B(B)sin2wot)x(t) = (1), 3)

where it is understood that the order of the
terms are as in (1), £(t) is a broadband weakly
stationary excitation, and f(t) is a correlated
weakly stationary Gaussian process. To derive
the probability distribution of (3) the standard
approach is by a coordinate transformation to a
pair of slowly varying variables and then to
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apply the stochastic averaging procedure to
arrive at a set of Ito stochastic differential
equations for the transformed coordinates. The
Fokker-Plank equation can then be used to
solve for the response pdf (Lin & Cai, 1995,
Floris 2012). This standard approach, applied
to the problem (3) leads to Gaussian statistics.
In reality, randomness in the amplitude £(t)
leads to intermittent parametric instabilities,
and therefore non-Gaussian statistics. To
account for the statistics due to intermittent
events triggered by [(t) we decompose the
probabilistic system response into the stable
regime and unstable regime according to

P(X) = P(X | stable regime )P(stable regime)
+P( X | unstable regime )P (unstable regime),
“4)

and derive the corresponding distributions for
each term in (4). We assume that instabilities
are statistically independent so that the
decomposition is applicable; in other words
that the frequency of B(t) crossing into the
instability region is sufficiently rare. We
remark that for the system to feature
intermittent instabilities it is required that the
correlation length of the process f(t) must be
sufficiently large compared the time scale of
damping =~ 1/{, so that instabilities develop.
In the following sections our attention will be
aimed for the case where the excitation £ (t) is
described by a Gaussian process to facilitate
the analytic determination of the terms in (4).
However, the ideas developed can be
generalized to the case when B(t) is a non-
Gaussian process by carrying out the procedure
using numerically generated realization of the
excitation process.

To proceed we will average the governing
system (3) over the fast frequency w,. We
assume that correlation length of the stochastic
process [(t) varies slowly over the systems
natural period 2m/w, so that B(t) can be
treated constant over the period, which will be
the case in order for (3) to exhibit intermittent
instabilities. To apply the method of averaging
to (3) we introduce the following
transformation
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x(t) = x,(t)cos(wet) + x,(t)sin(wyt)

xX(t) = —wox41(t) sin(wyt) + wex,(t) cos(wyt)

(%)

for the slowly varying variables x;(t) and

x,(t). Inserting (5)into (3) and using the

additional relation

x1cos(wot) + x,sin(wet) =0 gives  the
following pair of differential equations

x; (t) = —[2{owo (x15in* (wot) —

@B
2
woBx2sIn? (wot)sin(2wt)] — —sin(wot)E (t)

0
(6)

%xzsin(Zth)) — 2= x;s5in?Qwt) —

x5 () = [24owo G x15in(2w0t) —
wof
2
woBx1c0s? (wot)sin(2wt)] + = cos(wot)E ()

(7

%5082 (wot)) — —=x,sin?(2wt) —

Averaging the deterministic terms in
bra012<ets in (6) and (7) over the fast frequency
%fo /%0 4 t we have

Xy =— ((0 - %) WoXq — wiosin(wot) §(t)
3

Xy, = — ((0 + g) WXy + wiocos(wot) &(t).
&)

The averaged variables x; and x, provide
an  excellent statistical and  pathwise
approximation to the original system. Applying
the stochastic averaging procedure to the
random forcing gives the following set of Ito

stochastic ~ differential equations for the
transformed coordinates

561 = - ({0 - %) (l)oxl + V27TK Wl(t)

(10)

XZ - - ((0 + %) woxz + V27TK Wz(t),

(11)

with K = Sgz(w)/2w§, where Sgg(wy) is the
spectral density of the additive excitation &(t)
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at frequency w,, and W, and W, are
independent white noise of unit intensity (Lin
& Cai, 1995). The slowly varying
coordinates after averaging transform into two
decoupled Ornstein-Uhlenbeck (OU)
processes. While averaging the forcing term
provides poor pathwise agreement with the
original system, it does however provide
excellent statistical agreement.

3 PROBABILITY DISTRIBUTION OF
THE SLOW VARIABLES

Here we will present the main results on
how the heavy-tailed statistics of the averaged
slowly varying variables in(10) can be
approximated by separating the response into
stable and unstable regimes according to (4). If
B(t) is a zero mean process both x; and x, will
follow the same distribution. Incorporating bias
in the amplitude excitation term pB(t) is
straightforward. We will however concentrate
on a zero mean process which we write as
p(t) = ky(t), where y(t) is a Gaussian
process with zero mean and unit variance. We
consider the following OU process which
represents x; or X,

%= = (g~
We write (12) as
x=—-y{t)x+oW(),

’“”) weXx +aW () (12)

4

(13)

so that y(t) =@ —ky(t) is a Gaussian
process with mean M = {yw, and standard
deviation k = kwg/4. From (13) it is clear that
intermittency is triggered when y has zero
downcrossings.

We define the threshold of an instability by
n = m/k. So that the probability of y being in
a regime that does not trigger instabilities is
given by P(y > 0) = &(n) and otherwise by
P(y <0) =1—-®(n) (where ¢(-) denotes the
standard normal pdf and @(:) denotes the
standard normal cdf). However due to the
relaxation phase after an instability the
probability P(unstable regime) is not exactly
1 — ®(n). To determine the typical duration of
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the decay phase, we note that during the growth
phase the dynamics are approximately given by
x, = xge Yh<oTy<o where T, is the duration
for which y <0, x, is the peak value of x
during the instability, and ¥|,., is the
conditional mean of y given y < 0. Similarly,
for the decay phase x, = x,e ¥lr>oTdecay,
Combining these two results we have that the
typical ratio between the growth and decay
phase is given by

_ AR AU
Tdecay _ _ Vly<o _ 1o _ ., (14)
Ty<o Yly>o ﬁ'l+ki§—zg

The total duration of an unstable event is
thus given by the sum of the duration of T,
and Tgecay: Tinst = (1 + V) Tp<o- Making this
modification we have

P(unstable regime) = (1 + v)P(y < 0),
(15)

P(stable regime) =1 — (1 + v)P(y < 0).
(16)

3.1 Stable Regime Distribution

In the stable regime we have by definition
no intermittent events. The dynamics can
therefore be well approximated by replacing
y(@) by its_ cc:lnditionally stable average
Ylyso =M+ k?n) so that

X =—Y|ysox +aW(t). (17)

The corresponding stationary pdf of (17) is

a Gaussian distribution by the Fokker-Planck

equation (Soong & Grigoriu, 1993). This gives

us the following distribution for the
conditionally stable dynamics

y>ox?

2

_ . _ [Yly>o Hy>
P(X = x | stable regime ) = —Se o

(18)

3.2 Unstable Regime Distribution

Next we will derive the pdf for the system
response for the unstable regime. In the
unstable regime there is a growth phase due to
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the stochastic process y(t) crossing below the
zero level, which triggers the instability.
During this stage we assume that the
parametric excitation is the primary mechanism
driving the instability and ignore the small
white noise forcing term which has a negligible
minimal impact on the pdf of the response. We
characterize the growth phase by the envelope
of the response u = uye’™v<o, where u, is a
random variable that characterizes the stable
envelope pdf, A is a random variable that
represents the Lyapunov exponent, and T, <, is
the random length of time that the stochastic
process ¥ spends below the zero level.

We first determine the energy growth
distribution Q = AT, ... By substituting the
representation u =~ uge’<o into (13) we
obtain that the eigenvalue is given by A = —y
so that

fax) =P(=y 1y <0)

- k(l—tb(n)) ¢ (x;ﬁ)'

To determine analytically the distribution of
the time that the stochastic process ¥ spends
below an arbitrary threshold level 7 is not in
general possible. However an asymptotic
expression is available for the case of rare
crossings n — oo (Rice 1958)

(19)

mt2

frieo(® =€ T, (20)

which in our case provides a very good
approximation since we assume that
instabilities are rare so that 7 is relatively large.
In (20) T represents the average length of an
instability which for a Gaussian process is
given by the ratio between the probability of
Yy < 0 and the average number of upcrossings
of level n per unit time N (1) (Rice 1958)

P(y>n) 1-o(n)
peo =20 1 ~ @)
N () % —R7(O)exp(—n7)

where we have used Rice’s formula for the
expected number of upcrossings (Blake &
Lindsey, 1973, Kratz 2006) and where Ry (x)
represents the correlation of the process 7.
With these results we can determine the



p o

Proceedings of the 12™ International Conference on the Stability of
Ships and Ocean Vehicles, 14-19 June 2015, Glasgow, UK.

distribution of the energy excitation statistics
by the product distribution

fo(@ = I3 fa () fryy (2/2) 1 d. (22)

With the distribution of the energy
excitation statistics from (22) we can now
derive the pdf for the unstable response. For
simplicity let U = Ye? and A = Q, so that by a
random variable transformation we have

fua, ) = fro(v, @)det|0(y,q)/d(u, A)|
= S fo(@)

=~ fr(u/eM)fo(D).
(23)

Therefore the general form of the system
pdfis given by

fu) = [} =5 fru/eM)fe() dA.  (24)

Where the pdf f,, corresponds to the pdf of the
initial point of the instability. We note that the
OU process has the property that its interaction
with the parametric excitation gives rise to
“instabilities” of very small intensity which are
indistinguishable from the typical stable state
response. To enforce the separation of the
unstable response from the stable state requires
we introduce the following correction to the
initial point of the instability Y = |x4| + c,
where |Xs| is the pdf of the envelope of the
stable response (Rayleigh) and ¢ is a constant
that enforces the separation. We find that
choosing ¢ such that it is one standard
deviation of the typical stable response is
sufficient to enforce this separation and works
well in practice. In addition, this choice is
associated with very robust performance over
different parametric regimes. Therefore we
have that the distribution of the initial point of
an instability is given by

2y| vl
fr(x) = 222 (x — c)exp(— "2 (x — ©)?),
(25)
forx > c.
Thus after transforming the envelope

representation  into  the full  response
distribution by a narrowbanded argument we
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finally have the conditionally unstable
distribution
P(X = x | unstable regime ) = %fU(IxI)

(26)

4 COMPARISON WITH MONTE-CARLO
EXPERIMENTS

With  the results from  Section 3
constructing the full probability distribution for
the slow variable is straightforward and
requires using the result from the unstable

regime (26) and stable regime (18) and
combining them with the appropriate
weights (15) according to the

decomposition (4). Since we considered that
the noise term f(t) is unbiased with zero mean
the corresponding distribution for the response
of the Mathieu equation (3) will be given by
the distribution of the average of the slow
variable x; and x, (which are equivalent) since
the response is a narrowbanded process
according to x(t) = x1(t)cos(wyt) +
x,(t)sin(wyt). This can be seen by
considering the probability distribution for
cos(¢), where ¢ is a uniform random variable
between 0 and 2m. The pdf for z = cos(¢) is
given by f,(x)=1/m/(1-x?), =x€
[—1,1], which we approximate by f,(x) =
5(6(2 +1)+48(z—-1)).

For the Monte-Carlo experiments we
solve (3) with white noise forcing and non-
dimensionalize time by w, so that

#(6) + 240 £(8) + (1 + B(D)sin20)x(t) =
SW (1), (27)

for 2500 realization wusing forward-Euler
integration with a time step dt =5x 1073
from t =0 to t = 3500 and discard the first
500 time units to ensure statistical steady states
from any initial transients. Moreover we
simulate the stochastic process f(t) according
to the method presented in Percival 1992.

For comparisons we present three cases.
Moreover, even in very turbulent regimes with
frequent instabilities our results capture the
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trend of the tails. We set the damping at
o = 0.1, § = 0.002, the correlation length of
B(t) to be 50 times the time scale of damping
Leorr = 500, and show three cases with
varying frequency of instabilities by changing
the variance of . For the most intermittent
regime we set the standard deviation of
B(t) = ky(t) to k = 0.229 so that rare event
crossings occur with a 4.0% chance, for the
middle regime k = 0.200 with a 2.3% chance
of rare event crossings, and finally for the least
intermittent regime k = 0.178 with a 1.2%
rare event crossing frequency, see Fig. 2.
Overall we have good agreement between the
analytic distribution and Monte-Carlo results
for these three cases, we stress that the results
are robust across a range of parameters that
satisfy Ithcla a§sumpti0ns. .
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Figure 2 Comparison of Monte-Carlo results of
the Mathieu equation (27) (red curve) and
analytic probability distribution (blue curve)
for various intermittency levels with (left)
being most intermittent and (right) least
intermittent (semilogarithmic y-axis scale).
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S CONCLUSIONS

In this work we derive an analytic
approximation to the pdf for the damped
Mathieu equation tuned to the main resonant
frequency with random amplitude on the
harmonic parametric excitation term. This
system features intermittent resonance due the
random nature of the amplitude term that
triggers intermittent resonance and these
intermittent events lead to complex heavy-
tailed statistics. To derive the pdf for the
response we average the governing equation
over the fast frequency to arive at a set of
parametrically excited OU processes. We then
decompose the response for the slow variables
by conditioning on the stable regime and the
unstable (transient) state. In the stable regime
we employ classical results to describe the pdf
of the statistical steady state. In the unstable
regime we capture the response by
characterizing the transients bursts by an
exponential representation with a random
Lyapnuov exponent and growth duration. This
method allows us to capture the statistics
associated with the dynamics that give rise to
the heavy-tailed distributions and the resulting
analytical approximations compare favorably
with direct numerical simulations for a large
parameter range.
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