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ABSTRACT

The paper reviews the status of a multi-year research effort for using the split-time method
to calculate the probability of ship capsizing due to broaching-to in irregular waves. The present
work focuses on extending the existing theory of surf-riding and broaching-to from regular
waves to irregular waves and applying it to numerical simulation codes. Extending the theory
for irregular waves leads to the formulation of a spatial-temporal framework for considering
surf-riding where the celerity of irregular waves must be defined. An approximate metric for the
likelihood of surf-riding in irregular waves has been proposed as the distance, in the phase
plane, between the instantaneous position of a ship and the stable surf-riding equilibrium at that
instant. Further work includes studying the properties of the surf-riding phase plane in irregular

waves and statistics of surf-riding occurrences.
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1. INTRODUCTION

Surf-riding and broaching-to are associated,
complex phenomena linked through the
generation of attraction towards a point of
equilibrium located near a wave trough,
appearing to be stable in surge but unstable in
yaw. This yaw instability leads to a rapid,
uncontrollable turn which can induce a large
roll angle or capsize. The standing theory of
surf-riding and broaching-to was proposed on
the basis of the nonlinear dynamics theory
(Spyrou 1996, 1997). It used an ordinary
differential equations (ODE) model of ship
motion in regular following/quartering waves.
The minimal mathematical model for
describing these phenomena includes surge-
sway-yaw for modeling broaching-to plus a roll
motion equation to model capsize. An auto-
pilot equation also must be included for the
directional control of the ship. The resulting
system has a 10-dimensional phase space.

This already complex description becomes
even more complex if one considers the fact
that large-amplitude ship motions are described
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by integro-differential equations, where wave
excitation cannot be separated from stiffness
and hydrodynamic memory effects, such as
radiation and diffraction forces, are present.
Furthermore, the irregularity of realistic ocean
introduces new physical qualities to the
phenomenon.

The challenge to include surf-riding and
broaching into a probabilistic assessment of
stability based on advanced hydrodynamic
codes has been taken up by the US Office of
Naval Research (ONR) project “A Probabilistic
Procedure for Evaluating the Dynamic Stability
and Capsizing of Naval Vessels”. The project’s
main objective is to create a robust theory of
probabilistic capsizing in irregular waves and a
numerical procedure based on this theory.

The split-time method is the probabilistic
framework of this project. The idea of the split-
time method is to separate the complex
problem of the probability of a rare, extreme
event in two problems that may be less
complex. The “non-rare” problem is associated
with an intermediate random event, statistics of
which can be obtained by running an advanced
code for sufficient time. This “non-rare”
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problem ensures a correct relation between
time and probability in irregular waves. The
“rare” problem is responsible for modeling the
physics of the rare event. Its core is a metric of
the danger of the severe event, for example
capsizing or large roll angle caused by
broaching, that is computed when the
intermediate random event occurs. The
procedure is repeated for each intermediate
random event observed during the non-rare
simulations. The sample of metric values is
then statistically extrapolated to determine the
likelihood of the rare event. Since the metric
value is expected to include the physics of the
extreme event, actual observations of the event
are not required, so the method is expected to
work for conditions (sea states, speed, loading)
where extreme events are rare.

2. SURF-RIDING AND BROACHING-TO
IN LAMP

2.1 Objective and Approach

As the current theory of surf-riding and
broaching-to was developed wusing ODE,
application to more general models raises
certain questions. Can this theory be extended
to the cases when ship motions are presented
with integro-differential equations with 6
degrees of freedom and hydrodynamic memory
effects? How well will the analysis tools of
nonlinear dynamics work with the dynamical
system  represented by the advanced
hydrodynamic code? The results of a study of
these issues are presented in Spyrou et al.
(2009) and Belenky et al. (2010).

While the Large-Amplitude Motion
program (LAMP) was used as the main
hydrodynamic code for this study, the results
are meant to be code-independent and
applicable to any code capable of reproducing
surf-riding, broaching-to, and capsizing.
LAMP is a based on a boundary value problem
for radiation and diffraction (potential flow), a
body non-linear evaluation of the hydrostatic

and Froude-Krylov forces, and force models
for vortex and viscous effects (Lin and Yue
1990). The use of LAMP for the simulation of
ship maneuvering is described in Lin et al.
(2006) and Yen et al. (2010).

The ship configuration used for
demonstrating the surf-riding and broaching
phenomena is the “tumblehome” form of the
ONR Topsides Study (Bishop et al. 2005).

2.2 Time-Domain Simulations

The study first looked at the modeling of
large heel angle (up to capsize) caused by a
sharp turn. Figure 1 shows predicted time
histories of roll with two values of the
transverse metacentric height (GM) after a 30°
rudder application while sailing at 38 knots in
calm water. At the higher GM value, the ship
attains a large heel angle before recovering.
At the lower GM value, the ship capsizes.

The study then looked at surf-riding in
combinations of wave frequency and height
and ship speed for which the theory predicts a
co-existence of surging and surf-riding. Figure
2 shows different responses depending on the
initial conditions. Systematic simulations were
performed for a nominal Froude number (Fn)
from 0.3 to 0.41 and commanded headings
relative to the wave direction from 10 to 32
degrees. A summary of the results is presented
in Figure 3.
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Figure 1: Large heel angle and capsizing due to
sharp turn in calm water (Belenky et al. 2010)
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Figure 2: LAMP simulations showing

coexistence of surging and surf-riding (Belenky
et al. 2010)
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Figure 3: Boundaries of surf-riding in terms of
commanded heading as a function of nominal

Froude number (Spyrou et al. 2009)
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Figure 4: Capture into oscillatory surf-riding
for commanded relative heading of 12 deg,
Fn=0.36; notice the upward jump of mean
speed (Spyrou et al. 2009)

10

A remarkable feature that appeared at the
higher nominal speeds (Fn>0.33) was a stable
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oscillatory type of surf-riding, for which the
time history of ship speed is shown in Figure 4.
As the ship is carried along by a single wave, it
is also oscillating up-and-down the wave face.
This fascinating occurrence has been observed
in the past and has been explained as being due
to a Hopf bifurcation (Spyrou 1996).

2.3 The Continuation Method

The continuation method is a powerful
approach for studying the behavior of nonlinear
systems by mapping and characterizing
equilibria. However, continuation techniques
were developed for dynamical systems
described by ODE, and the application of
continuation with advanced hydrodynamic
codes presents many challenges, mostly caused
by hydrodynamic hysteresis (memory effect).
The first use of the continuation method
(DERPAR) with a potential flow code (LAMP)
was described by Spyrou et al. (2009). To
avoid excessive complexity associated with the
memory effect, the diffraction and radiation
forces have been approximated with constant
added mass and damping coefticient.

A sample result from LAMP-based
continuation analysis is given in Figure 5. The
curve shows the positions of surf-riding
equilibria in the coordinates as yaw vs. rudder
angle, and follows the similar curve from
Spyrou (1996). This curve contains both stable
and unstable surf-riding equilibria. That is why
the continuation method is necessary, as direct
time-domain simulations are not capable of
capturing unstable equilibria.
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Figure 5: Curve of yaw vs. rudder angle for
surf-riding equilibria calculation with DERPAR
and LAMP (Belenky et al. 2010)

The stability of regions of the equilibrium
curve was analyzed by examining the
eigenvalues. The inset plot shows eigenvalues
in the complex plane for a point on the curve at
which the Hopf bifurcation (Figure 4) can be
expected. Further development has led to the
inclusion of hydrodynamic memory effects into
the continuation analysis (Spyrou and Tigkas
2011).

2.4 The Theory and Code

The analysis carried out by Spyrou et al.
(2009) demonstrated that the LAMP-simulated
behavior is consistent with the current theory
of broaching-to and surf-riding. It also
confirmed the generic nature of the phenomena
that had been identified independently and for a
very different configuration in earlier research.
In particular, the consideration of all six
degrees does not change the qualitative picture
of the phenomenon.

LAMP-based continuation analysis
produced results that are consistent with direct
simulation of the stable equilibria as well as the
results of previous continuation research of a
more theoretical nature.

These results lead to the conclusion that the
current theory can be used to explain the
outcomes of time-domain simulation with
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advanced hydrodynamic codes and that
advanced hydrodynamic codes can describe a
nonlinear dynamical system.

3. SPATIAL-TEMPORAL
FRAMEWORK FOR SURF-RIDING

In regular waves, a sliding coordinate
system with its origin on the wave crest (or any
other point fixed to the wave) allows a space-
only consideration for surf-riding, as the next
or previous wave in space and time is exactly
the same. Figure 6 illustrates this approach; the
upper part (Figure 6a) shows the balance of
thrust and resistance plotted with the spatial
representation of the surging wave force. The
intersections of these two lines correspond to
surf-riding equilibria, which define the
topology of the phase plane shown in the lower
part (Figure 6b). As the wave is regular,
shifting coordinates in space corresponds to
shifting coordinates in time, so only one

coordinate — wusually space — has to be
considered.
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Figure 6: Surf-riding in regular waves — space
consideration only: (a) balance of forces and
(b) phase plane
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In irregular seas, the waves are changing in
both space and time. Consider an Earth-fixed
coordinate system and imagine Figure 6 slowly
changing in space for a fixed instant of time.
The picture then changes slightly for the next
time instant. As the waves change, surf-riding
equilibria (actually quasi-equilibria) appear and
disappear at different instances of time and
points in space. This qualitative description is
illustrated in Figure 7.

This rather qualitative consideration
produces two main outcomes:

e Celerity of irregular waves must be defined
in order to find the equilibria

e All elements of the mathematical model of
surf-riding in irregular waves must be
functions of position (x-coordinate) and
time.
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riding
equilibrium

Figure 7: Spatial-temporary framework for
surf-riding in irregular seas (Belenky et al
2011)

4. CELERITY OF IRREGULAR WAVES

4.1 Velocity of a Profile

The most evident idea for irregular wave
celerity was to find characteristic points in the
profile, track them in time, and take their
velocity as an approximation of wave celerity
at these points. Belenky et al. (2012) proposed
the tracking of zero-crossing points as
illustrated in Figure 8. Each curve in Figure 9

is a spatial wave profile plotted at a time instant.

Three zero-crossing points, marked by circles,

are tracked. The celerity calculated by this
method is generally reasonable, but at times
can become negative or jump to a very large
value.
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Figure 8: Celerity based on zero-crossing
points (Belenky ef al. 2012)

To gain a better understanding of the nature
of this behavior, simplified cases were created
with only two and three components (bi- and
tri-chromatic waves), as shown in Figures 9
and 10. The tendency for large peaks can be
seen even for two frequencies, and is even
more dramatic for three frequencies.

a) 2 Jam | ]
Filtered”
1
Original ;
I e
<
b) 0.4 0.6 0.8 1 1.2
20 7

19.57

Next wave

19 1 i

1,8
0 10 200 300 40 500

Figure 9: Bi-chromatic waves: (a) spectrum
and (b) time history of celerity (Belenky et al.
2012)
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Figure 10: Tri-chromatic waves: (a) spectrum
and (b) time history of celerity (Belenky et al.
2012)

Spyrou et al. (2012) had preferred to track
the points of constant wave slope, proposing
the concept of instantaneous celerity which can
be calculated at the exact ship position at each
time step. Figure 11 shows the celerity curves
calculated for seaway derived from a
JONSWAP spectrum. In a further development,
they also proposed calculating a characteristic
local celerity value corresponding to the point
of maximum wave slope that is found in the
vicinity of the ship. All these methods
converged to the finding that the peaks in the
celerity curve are intrinsic to the problem.

ms

Figure 11: Celerity curves corresponding to
wave slopes 1/75, 1/100, 0, -1/100, -1/75
(Spyrou et al. 2012)

The peaks appear to be related to changes in
the local wave features, as when one wave
overtakes another. As this occurs, a local wave

1092

feature may cease to exist and the tracked
points disappear and appear in another place,
leading to a “spike” in the velocity of those
points. Several candidate wave features were
considered as points to track, and the smoothest
behavior was found for the point of the
maximum wave slope on the forward face. As
this point can also be associated with the
maximum surging force on a ship, it has a
physical meaning with regard to surf-riding.

The calculation of wave celerity by tracking
the points of maximum wave slope has been
implemented in LAMP. In order to consider
oblique and short-crested (multi-directional)
seas, the algorithm searches for zeros of the
derivative of the wave slope in the ship’s
direction of travel,

3
Gy Bumt) o
ga
with the condition that they are on the down-
slope:

2
a Q(garznax’t) < 0 (2)
ga
Cw 1s wave elevation, & is a coordinate in the
mean direction of travel, and &mayx 1S a position
of maximum wave slope angle. & is related to
this Earth-fixed coordinate system as:

x=x5(t)+Ecosy

3
y=ys()+Esiny ©)

(xg, yo) is the current position of the center of
gravity of the ship and vy is the mean heading

~ angle with respect to the global frame.

For efficiency, the algorithm computes the
elevation and its derivatives on a line of points
within a characteristic wave length of the ship,
then iterates within intervals containing a
maximum slope point. The local maximum
slope points are tracked in time and the
propagation speed of the point closest to the
ship provides a practical celerity.
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Figure 12 shows a snapshot of a LAMP
simulation for the ONR tumblehome hull form
running in long-crested irregular waves. The
plot shows the wave profile at that time
instance along the ship’s travel direction with
marks for the points of maximum down slope
and elevation (crest). The wave in this case is
derived from a Bretschneider spectrum with
H=Tm and T,=12.0s. A portion of the time
history of the ship speed and the local wave
celerity is shown in Figure 13.
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Figure 12: LAMP simulation of ONR Topsides
tumblehome hull in irregular following seas
(Spyrou et al. 2012)
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Figure 13: Ship speed and wave celerity for
case with significant surf-riding in irregular
waves (Spyrou et al. 2012)

The comparison of ship speed and local
wave celerity clearly shows periods of surf-
riding (e.g. =380-480) and periods where the
wave is overtaking the ship (e.g. =480-600).
While the initial wave celerity jump at 60
seconds is an artifact of ramping-up the wave,
the “spike” in wave speed at t=675 is a case
where the phasing of the wave component
produces a very rapid local translation of the
point of maximum slope and is related to a
“merging” of wave faces. However, other
discontinuities in the celerity, such as the one
at t=530, are simply cases where the closest
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point of maximum slope switches from one
face to another as the waves overtake the ship.

In general, the problem of celerity in
irregular waves and how it can affect ship
motion is a very deep problem. Spyrou et al.
(2014) provided a comprehensive theoretical
analysis with an emphasis on the detection of
surf-riding.

4.2 Celerity Based on Instantaneous

Frequency

Looking for a method capable of producing
a smoother celerity curve, Spyrou et al. (2014a)
proposed an alternate scheme based on the
instantaneous frequency derived from an
envelope presentation of the wave elevation:

§(t,8) = A(t,E)cos(9(2,£)) (4)

For a case where the wave elevation y is
presented as typical cosine series, the
amplitude A(z,£) and phase 9(,§) functions are
computed from the wave elevations {y and the
Hilbert transform of the wave elevations

H(Cw):

At,8) =C +(H(G, )V

9(1 &) = arctang_W (%)
’ H(c,)
G (1,8) = iai Cos(kiﬁ —of+ (Pi)
- (6)

H(CW(t,é)) = Zm:ai Sin(kii -0+ (Pi)

a;, @,, and k; are the amplitude, frequency, and
wave number of the i component, while ¢; is a
random phase shift.

The instantaneous frequency oy and the
instantaneous wave number ky are then
computed as:
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0 (1.6) =—% )
oy (1,6) = %’é@ ()

This leads to the following definition of the
wave celerity:

CDW (ta E.»)

8= o)

©)

For numerical calculations, it is convenient
to substitute equations (5, 7, 8) into equation
(9) and perform differentiation:

Herde, %, 1
Iy
o, " ooe TV

Equation (10) presents the wave celerity as
a function of time and space that can be
computed everywhere. The result can be
compared against the instantaneous celerity
calculated through the tracking method. Spyrou
et al. (2014a) shows a series of comparisons
between the “wave profile” and “instantaneous
frequency” calculation schemes, an example of
which is reproduced in Figure 14. The two
calculations are generally very similar and both
show “spikes” in celerity, although there is
significant difference at the second spike at
440 s. What causes the “spikes” in formula
(10)?

ms
* \ Celerity corresponding - :
30 ! to weighted mean wave ;

25 frequency \

20
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Wave profile / maximum wave slope

time is)

Based on instantaneous frequency
Figure 14: Instantaneous celerity for the

bandwidth limited to 20% of the peak period
(Spyrou et al. 2014a)

Figure 15 shows the spatial profile of the
wave celerity calculated for Sea State 7
(Significant wave height 7.5 m, modal period
15 s) using a full-bandwidth Bretschneider
spectrum and random phases. At this instant in
time, there are four spikes at around 1500 m.
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Figure 15: Spatial profile of wave celerity

One of the advantages of the present
scheme of celerity calculation is that the origin
of a spike can be analyzed. Consider the
instantaneous wave number, which is the
denominator in formula (9):

kﬂné)=%’?
OH(G,), oG, (11)
s
¢y +(H(E, )

The spatial profile of the instantaneous
wave number is shown in Figure 16. It has a
minimum around 1500 m and this minimum is
negative. The curve of the instantaneous wave
number crosses zero twice, which results in
spikes in the value of instantaneous wave
celerity. Figure 17 plots the spatial profile of
wave elevations and shows that the minimum
of the wave number and spikes of the celerity
occur near the secondary maximum, i.e. the
local maximum without crossing the line of
calm water.

The secondary maxima and minima are
related to the origination of new waves. If the
local maximum at 1500 m raises and crosses
the calm water line, the new wave will appear.
Appearance of the new wave will lead to
appearance of a new point of maximum of the
wave slope and new zero-crossing. At the
instance the new wave appears, the tracked
points will make a finite “jump” in the
infinitely small period of time causing a
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theoretically infinite “spike” in celerity.
Limiting the smallest value of the
instantaneous wave number will limit the value
“spike” and will make the celerity equation
(10) into a practical formula for calculation.
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Figure 16: Spatial profile of the instantaneous
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Figure 17: Spatial profile of the wave elevation
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5. SURF-RIDING IN IRREGULAR
WAVES

5.1 Simple Mathematical Model of
Surging and Surf-Riding in Irregular

Waves

A simple model for one-degree-of-freedom
nonlinear surging was proposed in Belenky et
al. (2011):

(M + 4, +RIE,)

. 12
_T(acan)"‘FX(t’aG):O (2

M is mass of the ship, A4;; is the
longitudinal added mass, R is resistance in
calm water, T is the thrust in calm water, n is
the propeller rotation rate, Fx is the surging
component of the Froude-Krylov wave force,
and &g is longitudinal position of the center of
gravity in the Earth-fixed coordinate system.
The dot above the symbol indicates temporal
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derivative. Following Spyrou (2006), a
polynomial approximation for thrust and
resistance are used:

RU)=rU+nU* +1rU*

(13)
T(U,n): rlnz +172nU+173U2

As the model is meant at this stage to be
qualitative, a linear wave-body formulation
seems to be appropriate for the case.
Therefore:

FX(r,&G)=iAwos(kﬁ—w;w+v,-) (14)

i=1

As a body-linear formulation is adopted, the
amplitude Ax; and phase shift y; are available
via response amplitude and phase operators:

Ay, =a,RAO(K,) (15)
RAO(K)) = pgki[[ IC(x,ki)cos(kix)dxj
0.5L 2\/2
+( [ce, k,.)sin(k,.x)dxj ] (16)
C(x,k;) =2 [explk,z)b(x, z + d)dz (17)

—d

Here x and z are measured in the ship-fixed
coordinate system (positive forwards of
amidships and upward from the baseline),
b(x, z) is the molded local half-breadth, and d is
the draft amidships. The surging phase shift is
expressed as:

0.5L
[ Ceysin(k x)ax

-0.5L
0.5L

[ Cx k) cos(kx)a

-0.5L

(18)

Y, = arctan

The mathematical model described by
equations (12 through 18) is essentially an
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extended time domain version of the model
presented in Spyrou (2006). It is expected to
reproduce nonlinear surging and surf-riding,
which is illustrated in Figure 18.
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Figure 18: Solution in regular waves:

co-existence of (a) surging and (b) surf-riding
(Belenky et al. 2011)

5.2 Identification of Surf-Riding Instances
in Irregular Waves

There are two aspects to the problem of
identifying instances of surf-riding. The first is
that surf-riding in irregular seas is not visually
evident from the ship speed, as was illustrated
in Figure 13. Without the wave celerity plotted
alongside, an observer sees just a periodic
stochastic process. The second aspect is to see
how well definition of the wave celerity in
irregular seas can explain the observed
behavior. In a sense, the identification of surf-
riding can be used as qualitative validation of
the celerity calculation scheme.

A very basic example of such identification
is described by Belenky ef al. (2012), using tri-
chromatic waves and zero-crossing wave
celerity (see Figure 10). The time histories of
surging speed and celerity are shown in Figure
19. The evolution of the surging speed for the
first hundred seconds suggests attraction to a
surf-riding equilibrium. But is this really the
case?
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Figure 19: Time histories of surging velocity
and celerity for tri-chromatic waves (Belenky
etal 2012)

Figure 20 shows a “spatial snapshot” of the
forces (surging force vs. balance of thrust and
resistance) superimposed with a spatial profile
of the wave and its zero-crossing points. The
time instant is /=150 s. The instantaneous
position of the ship is indicated via the x-
coordinate of the diamond, while the balance
between thrust and resistance is indicated by its
y-coordinate. The diamond is located at the
intersection of the surging force and the
balance of the thrust and resistance at the wave
celerity. This means that the ship is in
equilibrium and surf-riding is observed.

This simple example shows how wave
celerity allows an interpretation of the observed
motion and establishes the fact of surf-riding.
The example also verifies the physical
relevance of the calculated wave celerity. The
method of calculating celerity based on
maximum wave slope was successfully tested
for identification of surf-riding by Spyrou et al.
(2012, 2014). Spyrou, et al. (2014a) used both
methods to calculate the celerity; see Figure 21.
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Figure 21: Time histories of surge velocity and
celerity calculated with max wave slope and
instantaneous frequency (Spyrou et al. 2014a)

Both methods of the wave celerity
calculation seem to identify surf-riding instance
in the same way, which is not surprising
considering the similarity in the results of the
two methods (Figure 14).

5.3 Phase Space in Irregular Waves

The position and type of the equilibria
defines the topology of the phase plane, so the
evolution of surf-riding equilibria in space and
time is a logical starting point for analyzing
surf-riding in irregular waves. Figure 22 shows
the calculated loci of equilibria for the tri-
chromatic case described above. The result is
remarkably consistent with the notional
topology presented in Figure 7.

The accuracy of the evaluation of the
equilibrium stability was not always sufficient
near the points where the equilibria appeared or
disappeared, so the stability status of those
point was corrected based on geometric
considerations. Correct points are shown as
two-color symbols. The inset in Figure 22
shows a close-up where the geometrical
correction was applied.

1097

@ @ Unstable equilibrium

(\ \\ \\ ® @ Stable equilibrium

ANRY

\\ \\

\\,:\ |

400 600
Distance from the origin

time

=

0 200 800 1000

Figure 22: Calculated traces of equilibria

The unsteady motion of the equilibria
qualitatively changes the phenomenon. A
frame of reference moving with the equilibrium
is no longer inertial. Also, the dynamical
system cannot stay at the equilibrium position,
even if the initial conditions correspond exactly
to the equilibrium, because the equilibrium will
move away. As an analogy, imagine a small
heavy ball in a wine glass that is being moved
in a circular motion. The ball will continuously
“chase” a quasi-equilibrium point that moves
around the inside of the glass.

The phase plane is also changing with time;
strictly speaking, the phase plane by itself does
not make sense beyond the “spatial snapshot”.
The phase trajectory becomes a 3D line in
hybrid phase-time coordinates (Kontolefas and
Spyrou 2015). Projecting to a plane, the set of
trajectories behaves as a non-stationary fluid
flow. Spyrou et al. (2014a) describe an
application of the concept of a Feature Flow
Field (Theisel and Seidel 2003), which
addresses the problem of feature tracking in
non-stationary flow fields. The Feature Flow
Field (FFF) method has been proposed for the
tracking of a variety of different local features,
including critical points of vector fields (such
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as, in our case, the surf-riding equilibria).
Figure 23 shows an example plot for surf-
riding, where “saddle and focus-like” structures
are present.
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Figure 23: Streamlines and magnitude of
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(Spyrou et al. 2014a)

Spectrum

Further  developments  towards  the
understanding of this time-dependent phase
plane are described in Kontolefas and Spyrou
(2015). Here 1is discussed a combined
consideration of the feature flow field concept
for tracking surf-riding states with the concept
of hyperbolic Lagrangian Coherent Structures
which can be seen as the finite-time
generalization of the manifolds.

5.4 Statistics of High-Runs

The study of surf-riding in irregular waves
requires the capability to characterize
observations from simulations or model tests.
However, the identification of surf-riding
events in irregular waves 1is not trivial,
particularly if the wave celerity cannot be
calculated, which will generally be the case in a
model test. It therefore makes sense to also
look at the statistics of significant exceedances
of the nominal speed by the surge velocity, also
known as ‘“high-runs”. Themelis et al. (2015)
studied the statistics of high-runs depending on
spectrum and sea state.

The idea of high-runs is not new. As
pointed out in that work, Grim (1963) had
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looked into the probabilistic quantification of
the occurrence and duration of high-runs (“long
run”) in a following irregular sea, taking into
account the strongly nonlinear character of
surge motion when the phenomenon occurs.
Themelis et al. (2015) also examined the
relation between the high-run occurrences and
the instantaneous wave celerity (Figure 24).
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i icelerity
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: ; : : : ' fime (s)
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Figure 24: Schematic definition of high-run
with the superimposed instantaneous wave

celerity (Themelis et al. 2015)

The conclusion was that the velocity of the
high-run shows good correlation with the mean
instantaneous celerity when an error metric
combining errors of amplitude and phase is
applied.

5.5 Metric for Likelihood of Surf-Riding

As described at the beginning of this paper,
a central element in the implementation of the
split-time method is developing a metric for the
likelihood of a rare event which can be
evaluated at the occurrence of an intermediate
event of some sort. An initial proposal for a
metric of the likelihood of surf-riding can be
found in Spyrou ef al. (2014a) and is illustrated
in Figure 25. The idea is to compute a “critical
distance” in the phase plane between the ship’s
state (position and velocity) at up-crossing and
a critical state (point in the phase plane) from
which the ship would be captured into surf-
riding.



pad

Proceedings of the 12™ International Conference on the Stability of
Ships and Ocean Vehicles, 14-19 June 2015, Glasgow, UK.

475 ms | Stable
Unstable equilibrium
2T equilibrium t =0 o
at =0 /
9 e
-50 0 50, \ 100 \-}750 200 £om
_ﬂ / \
/
. //
P /7 Critical point
—_——0
8T Metric of surf-riding
Likelihood — critical \
-1 distance in phase plane Y
‘ ‘ ‘ Initial position

|
_—

Figure 25: Initial idea for the metric of the
likelihood of surf-riding

The critical point would lie on the line
between the initial position of a ship (state at
upcrossing) and the position of the stable
quasi-equilibrium at the initial instant. A series
of “rare” simulations would be performed for
initial conditions corresponding to points along
this line, and these simulations would
determine the conditions that led to surf-riding.

This metric was initially tested with a
slowly changing regular wave for which it is
possible to explicitly consider the motion of the
equilibria. The critical distance could be
calculated, but the point to which the system
was attracted and, once the critical point was
reached, captured into surf-riding was different
from the stable equilibrium at the initial
moment.

A method of calculating wave celerity
based on instantaneous frequency allowed the
metric to be tried in irregular waves. The
observed picture was more complex. The
acceleration of the equilibria is not small and,
as a result, the actual attraction does not occur.
Instead, the dynamical system moves around
the equilibrium path, similar to the picture on
Figures 13 and 24. Figure 26 shows the phase
plane computed for a moving frame of
reference. The velocity of this frame of
reference is constant and corresponds to a
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velocity of the stable equilibrium at the initial
moment.
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Figure 26: Phase plane trajectories for the
critical point determination in calculating a
metric for the likelihood of surf-riding in
irregular waves

The main difference is that the dynamical
system does not follow the stable equilibrium,
even if it was placed exactly in the equilibrium
position at the initial moment. Furthermore, the
equilibria can move toward each other and
disappear, releasing the ship from the surf-
riding. This means that the criterion for
attraction to equilibrium is not as evident as in
the case shown in Figure 25. While it is
possible to find the critical point visually, the
development of a formal criterion of attraction
remains for the future work.

6. CONCLUSIONS AND FUTURE
WORK

This paper has reviewed work related to
surf-riding and broaching-to that has been and
continues to be performed under the ONR
project entitled “A Probabilistic Procedure for
Evaluating the Dynamic Stability and
Capsizing of Naval Vessels”. The present work
focusses on how irregular waves influence the
phenomenon. The review addressed three
major areas:
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e Simulation of surf-riding and broaching-to
by advanced hydrodynamic codes and the
applicability of nonlinear dynamics tools

e Celerity of irregular waves

e Properties of time-dependent phase space
of surging and surf-riding in irregular seas
and their characterization.

The results of the studies may be
summarized in the following conclusions:

e Surf-riding and broaching-to responses
predicted via hybrid hydrodynamic codes
are consistent with theoretical results, and
the concepts and tools developed from
ODE-based analysis can applied to
simulation tools as well

e The introduction of irregular waves leads to
qualitative changes in surf-riding and
broaching-to, including:

o Problem must be considered in space
and time

o Surf-riding equilibria moves in an
unsteady (accelerating) manner, and can
appear and disappear in time

o Surf-riding modes exist for a limited
period of time

o The system attracted to an equilibrium
cannot stay with the equilibrium, but
instead moves around it.

Problems to be addressed in the next stage
of the research project include:

e Formulation of convergence criteria for the
metric of likelihood of surf-riding

¢ Inclusion of sway and yaw into the simplest
mathematical model, and study of the
uncontrolled turn in irregular waves

e Formulation of the metric of likelihood of
broaching-to and capsizing caused by
broaching-to.

Solution of these problems is aimed at the
developing the procedure for a physics-based
statistical extrapolation using a limited data set
from nonlinear time-domain  numerical
simulation. It is envisioned that the procedure
will consist of the following steps:

e Prepare an extrapolation data set of

simulation data

e Set an intermediate threshold providing a
reasonable  number  (thousands) of
upcrossings to be observed

e For each upcrossing, compute a metric of
the likelihood of surf-riding, broaching-to,
or capsizing due to broaching

e Fit a Generalized Pareto Distribution
(GPD) to the metric data and evaluate the
estimate of the capsizing rate and its
confidence interval from the extrapolation
of the metric to the level at which capsizing
is inevitable.
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