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ABSTRACT

The inverse problem in hydrodynamics of potential flow consists of finding velocity and wave
pressures under assumption that a wavy surface elevation is known beforehand. The solution to this
problem in both two and three dimensions is known but is based on theory of small-amplitude
waves. Since some hydrodynamic problems involve waves of arbitrary amplitudes a more general
solution is needed. In the paper such solution is given for two and three dimensions and it is shown
that it is efficient from computational point of view and more accurate than the solution for small-

amplitude waves.
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1. INTRODUCTION
A potential flow is the flow of inviscid in-
compressible fluid which is described by the
system of equations (Kochin et al, 1966)
Vi =0,
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where ¢ is velocity potential, {'is wavy sur-
face elevation, p is wave pressure, p is water
density, v=(p. ¢, ¢.) is velocity vector, g is
gravitational acceleration and D is a substantial
derivative. The first two equations are equation
of continuity and equation of motion (the so
called dynamic boundary condition) and both
are derived from Navier-Stokes equations for
incompressible inviscid fluid. The last one is
kinematic boundary condition for free wavy
surface which states that rate of change of
wavy surface elevation equals to the change of
velocity potential derivative along the wavy
surface normal.
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In previous paper (Degtyarev & Gankevich,
2012) the solution to inverse problem is given
for small-amplitude waves when wave length is
much larger than wave height (1 >> h). It is
shown that the inverse problem is linear and
can be reduced to a Laplace equation with a
mixed boundary condition with equation of
motion being used only to determine wave
pressure. The assumption of small amplitudes
means the slow decay of wind wave coherence
function, i.e. a small change of a local wave
number in time and space compared to the
wave elevation. This assumption allows the use
of special derivative formula {;=k{, where £ is
the wave number; using this formula the solu-
tion is constructed. In two-dimensional case the
solution is given by
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where o is the wave slope. In three-
dimensional case the solution is given by
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Here the formula is not explicit and repre-
sents elliptic equation which is intended to be
solved by a variety of known numerical meth-

ods.

Although, these methods are efficient and
work well for a wide range of wavy surfaces
some weather conditions produce waves with
wave numbers which change frequently in time
and space. These are transitions between nor-
mal and storm weather, wind wave and swell
heading from multiple directions and some
others. These weather conditions and a possi-
bility to obtain a more general solution are the
main reasons for solving the potential flow
problem for arbitrary amplitude waves case.

2. TWO-DIMENSIONAL CASE

For two-dimensional flow equation (1) can
be rewritten as follows.

¢xx +¢zz = O’
1
R AR e SR
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The first step is to solve Laplace equation
using Fourier method. The solution can be
written as integral similar to Fourier transform:

gt+gx¢x = ¢x+¢z’ @’: g(x9y’t)9

o(x,2) = TE(z)e“”f”dﬂ ©)
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Then coefficients £ can be determined by
plugging this integral into kinematic boundary
condition and evaluating derivatives. This step
gives equation

syl +e;
l—igx(\/l +g? —1)
which represents forward bilateral Laplace

transform and thus can be inverted to yield
formula for coefficients E:

I syl+s,
Li-ig i+g? -1

The third step is to plug (4) into (3) which
yields the final result:

= j AE(A)e ™ d A
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When equation (1) is solved that way, wave

pressures can be determined from dynamic
boundary condition.

)
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e—/i(g+ix)dx.

Since velocity potential is the only un-
known prerequisite for determining wave pres-
sures it is feasible to use it to validate the solu-
tion. A comparison was done to the known
small-amplitude wave solution (2) and numeri-
cal experiments showed good correspondence
rate between resulting velocity potential fields.

In order to obtain velocity potential fields
the wavy sea surface was generated by auto-
regressive model differing only in wave ampli-
tude. In numerical implementation infinite out-
er and inner integral limits of (5) were replaced
by the corresponding wavy surface size (xy,x;)
and wave number interval (45,4;) so that inner
integral of (5) converges.

Experiments were conducted for waves of
both small and large amplitudes and in case of
small-amplitude waves both solutions produced
similar results, whereas in case of large-
amplitude waves only general solution prduced
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Fig. 1 Comparison of velocity fields produced by general solution (u;) and solution for small-amplitude waves (u,).
Velocity fields for small-amplitude (left) and large-amplitude (right) wavy sea surfaces.

stable velocity field (Figure 1). The fact that
velocity fields for small-amplitude waves are
not equal can be explained by stochastic nature
of autoregressive wind wave model (i.e. the
amplitude is small in a statistical sense only).
Therefore, general solution in two-dimensional
case works for different wavy sea surfaces
without restriction on wave amplitude.

3. SPECIAL TRANSFORM

Three-dimensional problem can be solved
with help of special inversion formula which
serves as a modified version of Fourier trans-
form. The transform has the following form:

F(x’y) = JJf(ﬂ’j/)ei(ﬂxﬂy)ﬁ(x,y)\lﬂzwz dMy
- (6)

In order to derive inversion formula this
expression should be reduced to a two-
dimensional convolution. By applying trans-
formations

(A,7) = (r,0),A =rcosO,y = rsin6,|J| =r,
(x,y) > (p,y),x = pcosy, y = psiny,

(7

the formula is rewritten in polar coordinates
for both fand F:

©2r

F(p.y) = [ [ of (r. @)= dr.
00

Then applying additional transformations
rorr=ep=p.p=e"’;

c>¢.c=e¢ ®)
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to the radius vectors and function " a convolu-
tion can be obtained:

F(p'.w)=fi* /5,
L (,0)=e" f(r,0),
£ w) = explie™ cosy + e (0 )

©)

Since convolution theorem permits any
converging integral transform to be applied to a
convolution, here a modified polar version of
Fourier transform

e (n0))r.0) = [ [-eg(r,0)

exp|-ie”'r; cos(6, — 0) i dr

(10)

is used. Applying this transform to the both
sides of equation (9) yields the final formula

A
XZ

X, )
2
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where # is ordinary forward Fourier trans-
form.

={F(x,y)}= @{ (11)

{explix +¢(x, )]}

This formula is useful in two cases. First, it
allows inversion of initial modified Fourier
transform (6) which is needed when solving
three-dimensional problem. Second, it can be
used to compute F efficiently with use of fast
Fourier transform family of algorithms. So,
special transform is the tool to solve three-
dimensional problem.



p 2.

Proceedings of the 12™ International Conference on the Stability of
Ships and Ocean Vehicles, 14-19 June 2015, Glasgow, UK.

4. THREE-DIMENSIONAL CASE

Three-dimensional problem is solved most-
ly the same way as its two-dimensional coun-
terpart, however, special transform developed
in the previous section should be used instead
of bilateral Laplace transform and some terms
from system of equations (1) should be rewrit-
ten in dimensionless form for convolution to be
physically feasible.

4.1 Formula derivation

Consider a square region with a side N
where the problem is being solved. Then coor-
dinate transform (x,y) — (xN,yN) produces sys-
tem of equations with dimensionless x and y:
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where d = N> +¢2 +¢7 .

The first step is to solve Laplace equation
with Fourier method which yields

F(x,y,z) = J_[E(/i,y)eM(iN(i””)”(x’””2+72)d/1d7/.

—00

(12)

Here 4 and y represent wave numbers which
were made dimensionless with transform
(4,7)—> (AM,yM). Then the expression 1is
plugged into the kinematic boundary condition
yielding

= TjdldVE(l j/)eM(iN(ﬂx+;{v)+gW)

%[Nsw_i,zgx(d—N)—im(d—N)]
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In order to obtain convolution formula
transformations (7) and (8) from the previous
section are applied:

Finally, after applying modified Fourier
transform (10) to the both sides of this equation
the formula for coefficients £ can be derived:

Me*"
~d E( ,0)

|

where d'= \/N2 +e2p'(g£. +g;).
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—ie” sin(0-y)g, (d'-N)

@{gt(x,y)}: {i‘z(l ;//)} {f( ’y)eM(le+g)}

e y)_MN2+igx(w/N2+gf+g§ —N)

N\/N2+gf+gj

4.2 Numerical implementation

Using formula (11) the integral from (12)
can be decomposed into two forward and one
inverse Fourier transforms, so the whole solu-
tion can be computed efficiently:

@(x,y,2) = @‘_1{@:{—]5(/1’7/ )

2ty }@{eMUM) }}

Forward and inverse Fourier transform of £

cancel each other:
[Tl et |
(P(x» Y, Z) =% { @’t{f(x, y)eM(iNx+g)} :

There is no easy way to derive analogous
formula for velocity potential derivatives, how-
ever, numerical experiments have shown that
there is no need to do it. These derivatives can
be obtained numerically via finite difference
formulae. Less number of integral transforms
means less numerical error and faster computa-
tion.
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Fig. 2 Slices at y=3.1; t=0 of propagating waves’ velocity potential field (left) and stream lines (right). Here
g(x,»,0) = Jycos(4m —0.25¢).
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Fig. 3 Slices at y=3.1; t=1 of standing waves’ velocity potential field (left) and stream lines (right). Here
¢ (x,,0) = cos(4x)sin(~ 0.25¢).

Fig. 4 Slice at y = 3:1; t = 0 of propagating waves’ ve- Fig. 5 Slice of a wavy surface with waves of large ampli-
locity potential stream lines. Here tude generated by autoregressive wind wave model.

g(x,p,1) = Jscos(dx(x + y) - 0.25¢).
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So, from computational point of view ve-
locity potential is given by four fast Fourier
transforms plus three numerical differentiations
(one for each coordinate), in other words its
asymptotic complexity is roughly
4nlog, n+3n, where n is the total number of
points in the volume.

4.3 Evaluation

Three-dimensional solution was evaluated
on different types of waves: propagating, stand-
ing and real ocean waves generated by auto-
regressive model. For the first two types of
waves the shape of velocity potential and ve-
locity field is known and can be found else-
where (van Dyke, 1982), so they were used to
validate the solution. The last type of wave was
used to see how the solution behaves in case of
large amplitude waves.

Since computation is done with discrete
Fourier transforms the resulting data is some-
times perturbed on the edges (Lyons, 2010). In
real world those perturbations should be re-
moved from the solution but here they were left
for the sake of transparency of results.

Propagating waves are known to have re-
gion of negative velocity potential under the
front slope and region of positive potential un-
der the back slope while standing waves are
known to have region of negative potential un-
der their crests and region of positive potential
under their bottoms. Velocity of a water parti-
cle is always in the direction of negative poten-
tial and it is perpendicular to the contours of
velocity potential. This behaviour is fully cap-
tured by the solution (Figures 2—4).

For large amplitude waves the solution was
tested on the wavy surface generated by auto-
regressive wind wave model and in this case
the shape of stream lines and potential field is
asymmetric. As can be seen in Figure 5 stream
lines are skewed in the direction which is op-
posite to the direction of wave propagation.

1122

5. CONCLUSIONS

To sum up, new solution allows determin-
ing velocity field for waves of arbitrary ampli-
tudes and is fast from computational point of
view. For plain waves the solution gives the
same field as previously known solutions and
for large-amplitude waves it gives asymmet-
rical velocity field.
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