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ABSTRACT

Calcoque is a 3D hydrostatic computer code developed at the French Naval Academy. It 
computes equilibrium, stability and bending moment. A matrix algorithm transforms the classical 
representation of the ship by stations into a volume mesh made of tetrahedrons, prisms and 
hexahedrons, which can have large dimensions without degradation of the numerical result. At 
present the codes can handle the existing IMO intact stability criteria. It can also compute damage 
stability. The software code has a geometric equilibrium algorithm compatible with a strong 
coupling between the heel and trim. The balance position is determined on calm water and on static 
waves with two or three degrees of freedom. These characteristics make the code fully compatible 
with the second generation intact stability criteria. After some particularities of the code are 
presented, the paper shows a sample of computation applied to the pure loss of stability failure 
mode.
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1. INTRODUCTION

Calcoque is a 3D hydrostatic computer
code developed at the French Naval Academy 
for academic and research use. It computes 
equilibrium, stability (intact and damage) and 
bending moment and can handle the existing 
IMO intact stability criteria. It uses an unusual 
3D volume method for hydrostatic computa-
tions based on meshes made of tetrahedrons, 
prisms and hexahedrons. 

The goal of this study is to use this 3D 
hydrostatic volume method to compute first 
and second level pure loss of stability criteria 
for a passenger ship. These criteria are 
extracted from IMO second generation intact 
stability regulation currently under develop-
ment and validation (Bassler, et al., 2009, 
Francescutto, et. al., 2010, Wandji, et al., 
2012). In order to avoid any assumption about 
the height of the centre of gravity, the criteria 

are evaluated through KGmax curves they 
generate.

This paper presents the 3D hydrostatic 
volume method and its application on pure loss 
of stability criteria. 

2. VOLUME HYDROSTATIC
COMPUTATION

The hydrostatic solver consists of three
main algorithms. The first one transforms a 
classical representation of the ship by sections 
into a volume mesh. The second algorithm is 
cutting the volume mesh by a plane, generating 
two volume sub-meshes (one on each side of 
the plane) and a surface mesh at the 
intersection. The third one searches the balance 
position of the ship on calm water and on static 
waves with three degrees of freedom (sinkage, 
heel, trim) or two degrees of freedom (fixed 
heel). These algorithms are partially described 
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in a handbook (Grinnaert & Laurens, 2013) but 
have never been introduced in open literature. 
They are described below. 

2.1 Generation of Volume Mesh 

The ship is designed with stations, which 
are a list of (Y, Z) points with the same 
longitudinal coordinate X. Stations must be 
ordered from aft to forward. They are 
symmetrical, defined on port side only. The 
first point of each station is on the ship’s 
centreline (Y=0). Vertical coordinate of the 
points are increasing (Zi+1>Zi). 

Lines defined by the user connect some 
points of stations in order to represent the main 
edges of the hull. A line starts at any station 
and ends at any other one located forward. It 
has a unique point on each station it intersects 
and cannot miss out any station. Two lines can 
intersect only at a station point. 

Figure 1  Stations and lines of an offshore 
patrol vessel. 

Stations and lines (Figure 1) are used to 
generate a volume mesh of the ship through a 
“matrix” algorithm which builds the N-1 strips 
defined by the N stations. For each strip 
between stations indexed i and i+1, the process 
is organized in two steps. 

First step.  The first step consists of the 
generation of a matrix defining the links 
between all the points of the station i and all 
the points of station i+1. Let us consider a strip 
defined by a aft station with 5 points (port side 
only) and a forward station with 4 points. Let 
us consider 3 user lines. The first one links 
point 1 of the rear station to point 1 of the 
forward station (keel line). The second links 
point 2 (rear) to point 3 (forward). The third 
links point 5 (rear) to point 4 (forward). The 

strip and its links can be represented by Figure 
2 (stations in black, lines in grey). 

Figure 2  Strip defined by two stations and 
three lines. 

Thus, a link matrix is defined with 5 rows 
associated with the 5 points of the rear station, 
and 4 columns associated with the 4 points of 
the forward station. The three user lines are 
represented in this matrix by three black dots in 
the appropriate cells (Figure 3). 

Figure 3  Link matrix associated with the strip. 

Each link in the matrix defines two 
restricted zones which are the upper right cells 
and the lower left cells. This avoids 
considering a line which crosses another. In the 
current sample, the restricted zones defined by 
the second link (2-3) appear in grey in Figure 
3. Both other links (1-1 and 5-4) define no 
restricted zone. 

Thus, the matrix filled with user links is 
automatically completed with other links by 
going from the upper left corner to the lower 
right corner without missing out any cells 
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while passing by all cells associated with user 
links. Diagonal path is favoured (link 1-1 to 
link 2-2). If not possible, the path is horizontal 
(2-2 to 2-3) or vertical (3-4 to 4-4). These 
added links are grey dots in the left part of 
Figure 4. They can be added on the strip 
diagram (right). 

Figure 4  Completed link matrix (left) and 
associated strip diagram (right). 

Second step.  The second step consists of 
the generation of the volume and surface 
meshes defined by the completed link matrix. 
A diagonal path (1-1 to 2-2 and 2-3 to 3-4) 
generates a tetragon on each side of the hull 
and a hexahedron which connects both 
together. A horizontal path (2-2 to 2-3) 
generates a triangle on each side of the hull and 
a prism, whose bases are on the forward 
station. A vertical path (3-4 to 4-4 and 4-4 to 4-
5) also generates two triangles and one prism, 
but their bases are on the rear station. The 
surface mesh associated with the current 
sample is shown in Figure 5. 

Figure 5  3D wireframe view of the strip and its 
surface mesh. 

Flat volumes should be eliminated (same Z 
coordinate of the points). Some volumes may 
be simplified: in the sample, the first 

hexahedron is a prism because the Y coordinate 
of the first point of each station is null. 

The volume mesh of the entire ship is 
created by concatenating all strips (Figure 6). 
The volume mesh may be corrected to 
represent the real hull. It may be cut at the 
watertight deck and the void spaces (bow 
thruster tunnel, water inlets, flooded rooms for 
damage stability …) may be extracted. Both 
operations need a routine which cuts the mesh 
by a plane, described below. Volume meshes of 
appendages and propellers may be added. 

Figure 6  Wireframe view of the volume mesh 
of an offshore patrol vessel. 

2.2 Cutting the Volume Mesh by a Plane 

Cutting a volume mesh by a plane is 
necessary to define the waterplane. It also 
permits to extract some volumes from the hull 
(void spaces or flooded rooms) and to define 
volume meshes of the compartments and 
surface meshes of the decks. The volume mesh 
is made of prisms and hexahedrons. The former 
can be divided in three tetrahedrons and the 
latter in two prisms or six tetrahedrons. The 
cutting routine of prisms and hexahedrons only 
handles simple cases: volume entirely on one 
side or the other of the plane, a face contained 
in the plane or face “parallel” to the plane. In 
other cases, the volume being cut is previously 
decomposed into three or six tetrahedrons. 
Each point of the tetrahedron can be located on 
one side of the plane, included in the plane, or 
on the other side. Then, we have 34=81
possibilities. However, the order of points 
having no importance (unlike the necessary 
orientation of the vertices of a surface mesh) 
the number of possibilities is reduced to 15 and 
may be simplified to 8 (see Table 1). 
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Case Topology 

A
No point on the upper side 
1 tetrahedron on the lower side 
1 intersecting triangle if 3 points in the plane 

B No point on the lower side 
1 tetrahedron on the upper side 

C

2 points on the upper side 
2 points on the lower side 
1 prism on the upper side 
1 prism on the lower side 
1 intersecting tetragon 

D

1 point on the upper side 
3 points on the lower side 
1 tetrahedron on the upper side 
1 prism on the lower side 
1 intersecting triangle 

E

3 points on the upper side 
1 point on the lower side 
1 prism on the upper side 
1 tetrahedron on the lower side 
1 intersecting triangle 

F

1 point on the upper side 
1 point in the plane 
2 points on the lower side 
1 tetrahedron on the upper side 
1 tetrahedron on the lower side 
1 intersecting triangle 

G

2 points on the upper side 
1 point in the plane 
1 point on the lower side 
1 tetrahedron on the upper side 
1 tetrahedron on the lower side 
1 intersecting triangle 

H

1 point on the upper side 
2 points in the plane 
1 point on the lower side 
1 tetrahedron on the upper side 
1 tetrahedron on the lower side 
1 intersecting triangle 

Table 1  Cut cases of a tetrahedron with a 
plane. 

2.3 Research of the Balance Position 

The research algorithm for the balance 
position is partially presented in a handbook 
(Grinnaert & Laurens, 2013). A second method 
has since been implemented in the Calcoque 
software.

Definition of the Balance Position.  The 
three degrees of freedom are sinkage (e, metre), 
heel ( , radian) and trim ( , radian). Sinkage 

replaces draught which has no sense while heel 
approaches 90 degrees. Sinkage is defined as 
the algebraic distance between a ship fixed 
point Q (coordinates LPP/2, 0, Z of the 
reference waterline 10H) and its projected 
point P on the calm water waterplane (even for 
computation on static waves). See Figure 7. 

Figure 7  Sinkage. 

Balance is achieved if the three following 
conditions are met: 

With: 
 Computed displacement volume (m3)
0 Ship displacement volume (m3)
 Volume gap (m3)

X Longitudinal gap (m, defined below) 
Y Transverse gap (m, defined below) 

Heel can be free (research of the balance 
position) or fixed (GZ curve computation). In 
that case, the third condition is ignored and the 
transverse gap Y is the righting arm lever GZ. 

Inclined Ship Planes.  X and Y gaps are 
respectively the algebraic longitudinal and 
transverse distances between the centre of 
gravity (G) and the Earth vertical through the 
centre of buoyancy (B). Two “inclined ship 
planes” are defined to compute these gaps. 
Their line of intersection is the Earth vertical 
whose director vector is n1.
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The transverse plane of inclined ship also 
contains vector n2 defined as: 

The longitudinal plane of inclined ship 
contains n1 and n3 vectors with: 

In the ship fixed coordinates system, the 
three vectors are: 

Thus, X and Y gaps are respectively the 
algebraic distances between G and the 
transverse and longitudinal planes of the 
inclined ship. They are computed as follows: 

Gaps and planes are shown in Figure 8. 

Figure 8  Gaps and inclined ship planes. 

This expression of the longitudinal gap is 
more accurate than the simplified strip method 
proposed by the SLF 52/INF.2 (annex 6) which 
consists in: 

Hydrostatic computation on calm water.  
The waterplane, depending on sinkage (e), heel 
( ) and trim ( ), is defined with a point P (see 
Figure 7) and the vector n1 with: 

When searching for the balance position, 
the displacement volume ( ) and its centre (B) 
are computed by cutting the watertight volume 
mesh by the waterplane. 

Hydrostatic computation on waves. Water-
tight volume is previously divided in strips by 
cutting with transverse planes. SLF 52/INF.2 
(annex 6) recommends at least 20 strips. In 
each strip, the following are defined (see 
Figure 9): 

Plane P1: strip’s rear plane. 
Plane P2: strip’s forward plane. 
Line D3: through point P with director 
vector n3 (longitudinal line included in the 
calm waterplane). 
Point I1: intersection of P1 and D3.
Point I2: intersection of P2 and D3.

Three points (A, B and C) define the strip’s 
local waterplane. They are defined as follows 
(see Figure 9): 

With: 
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h Wave height (m) 
k Wave number (m-1)
x1 Longitudinal position of the rear plane of 

the strip 
x2 Longitudinal position of the forward 

plane of the strip 

Figure 9  Strip wave waterplane. 

Balance - First Method. The process is 
iterative. At each step, three gaps (two if fixed 
heel) are computed as explained above. 
Sinkage, heel and trim are corrected as follows 
before being used in the next step: 

With: 
ei sinkage at step i (m) 
ei+1 sinkage at step i+1 (m) 

i heel at step i (rad) 
i+1 heel at step i+1 (rad) 
i trim at step i (rad) 
i+1 trim at step i+1 (rad) 

Absolute values of the metacentric heights 
permit to let the process diverge in case of 
transverse or longitudinal instability. At first 
step, the waterplane area (AWP) and metacentric 
heights (GMT, GML) may be calculated with 
the hydrostatic table or by direct computation 
on the waterplane surface mesh, which must be 

projected on an Earth-horizontal plane in case 
of computation on waves. At next steps, they 
are computed as follows: 

When the three gaps ( , , ) are small 
enough, the balance position is considered 
reached. This method is compatible with a 
strong coupling between the heel and trim 
(unconventional floating structures). However, 
it is fragile if the coupling between the trim and 
sinkage is strong because the corrections of 
trim and sinkage may conflict. 

Balance - Second Method. This method is 
also iterative and has been developed after the 
publication of the handbook (Grinnaert & 
Laurens, 2013). Before the iterative process, an 
initial hydrostatic computation gives the three 
gaps for initial values of e,  and . At each 
step of the iterative process, three hydrostatic 
computations (two if fixed heel) are performed. 
They permit to evaluate separately the 
influence of a small increment of sinkage, heel 
and trim on the values of the three gaps. These 
computations are listed in Table 2. 

 Input data Output data 
1 e+ e e xe ye

2 e + x y

3 e + x y

Table 2  Hydrostatic computations. 

With: 
e dfull/100 small sinkage increment 
 0.1 degree small trim increment 

e 1.0 degree small heel increment 
dfull (m) full loaded ship draught 

Then, still in the same iteration, the 
following system of three equations with three 
unknowns (2x2 if fixed heel) is solved: 
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Unknowns are de, d  and d , which are 
increments of sinkage, trim and heel to be 
added at current values to cancel the gaps. The 
second and third terms of the diagonal are 
respectively the longitudinal and transverse 
metacentric heights. Their sign may be used to 
detect instability and invert the sign of the trim 
and heel increments. 

At the end of the iteration, a last hydrostatic 
computation is done using corrected values of 
sinkage, trim and heel. If the three gaps are 
small enough, the balance position is 
considered reached. 

This second method is as suitable as the 
first for a strong coupling between the heel and 
trim. It is more robust in case of strong 
coupling between the trim and sinkage. The 
number of iterations is very small (1 or 2, see 
Table 3) but the number of hydrostatic 
computations is similar. If n is the number of 
iterations, the number of hydrostatic compu-
tations is 3n + 1 if the heel is fixed and 4n + 1 
if it’s free. 

Comparison of Methods.  Table 3 shows 
the GZ computed for a 13,000-ton ferry (length 
160 m) using both methods. It also shows 
numbers of iterations and hydrostatic 
computations to reach each balance position 
with fixed heel. The maximum allowed gaps 
are 1 m3 in volume and 1 millimetre for x. The 
maximum difference between both GZ is lower 
than 0.02 millimetres. 

Heel
(deg.) 

First method Second method 

GZ (m) Nb.
iter.

Nb.
calc. GZ (m) Nb.

iter.
Nb.
calc.

0 0.000 8 8 0.000 2 7 
1 0.042 6 6 0.042 1 4 
2 0.085 7 7 0.085 1 4 
3 0.130 11 11 0.130 1 4 
4 0.176 7 7 0.176 1 4 
5 0.224 7 7 0.224 1 4 

10 0.484 8 8 0.484 2 7 
15 0.774 8 8 0.774 2 7 
20 1.103 8 8 1.103 2 7 
25 1.441 7 7 1.441 2 7 
30 1.737 8 8 1.737 2 7 
35 1.984 5 5 1.984 2 7 
40 2.179 5 5 2.179 2 7 
45 2.252 6 6 2.252 2 7 
50 2.189 6 6 2.189 2 7 
 Sum 107 Sum 90 

Table 3  Comparison of both balance methods. 

Transverse metacentric height computation. 
The transverse metacentric height is computed 
using two first points of the GZ curve (0 and 1 
degree).

In the case of the hydrostatic computation 
on waves, the inertia of the projected 
waterplane is not used as recommended in the 
simplified strip method proposed by the IMO 
(see SLF 52/INF.2 annex 6). 

3. APPLICATION TO THE PURE LOSS 
OF STABILITY FAILURE MODE 

3.1 Goal and Ship Presentation 

The volume method is applied to compute 
the first and the second level of pure loss of 
stability criteria for a ferry whose 
characteristics are shown in Table 4. These 
criteria are extracted from second generation 
intact stability criteria, which are currently 
under development and validation at the IMO. 

209



Proceedings of the 12th International Conference on the Stability of 
Ships and Ocean Vehicles,  14-19 June 2015, Glasgow, UK. 

They are thoroughly presented by Umeda 
(2013). Two methods are proposed for the level 
one criterion. The first method considers a 
parallel waterplane with lowest draught (dL).
The second method consists in minimum GMT
computation on a static sinusoidal wave which 
has the same length as the ship. Both methods 
are tested. No assumption of centre of gravity 
position is made. KGmax curves are computed 
for several displacements with zero trim. Two 
watertight volumes are considered, respectively 
limited at 14 m and 9 m above base line. Their 
meshes include appendages. Void spaces are 
truncated (bow thruster’s tunnel and retractable 
stabilizers’ housings).

Length overall LOA 175 m 
Length between perpendiculars LPP 160 m 
Breadth B 24 m
Full load displacement 13147 tons 
Draught dfull 6.00 m 
Froude number @ 25 knots Fn 0.325 
Table 4  Ship main characteristics. 

3.2 Watertight volume limited at 14 m 

KGmax curves for the first and the second 
level of pure loss of stability criteria are shown 
in Figure 10. 

First level.  Both methods proposed for the 
first level give significantly different results. 
The first is quite more conservative than the 
second. The curve associated with first method 
has a hook at a draught of 5.67 m, which is the 
consequence of a loss of inertia on the parallel 
waterplane due to the stabilizers housings (see 
dark grey waterplane in Figure 11). Using the 
theoretical hull would mask this phenomenon. 

Recommendation: Regulation should 
specify the hull to use (real or bare). It should 
be noted that the simplified strip method 
proposed by the SLF 52/INF.2 annex 6 is not 
compatible with a real hull. This simplified 
method has been used by Wandji and 
Corrignan to apply the second generation 
criteria on a large sample of ships (Wandji, et 
al., 2012). 

Figure 10  KGmax curves associated with 1st and 
2nd level pure loss of stability criteria. 

Figure 11  Parallel waterplanes for d=6.00 m 
(light grey) and dL=3.33 m (dark grey). 

Second level.  We observe that the second 
level criterion is less conservative than both 
first level methods (except for one point below 
light ship displacement). 

Comparison with first generation criteria.  
KGmax curves associated with first and second 
generation criteria are compared in Figure 12. 
We observe that the pure stability loss criteria 
do not introduce a higher requirement for this 
ship. The existing ship will comply with the 
new regulation but the architect will need to 
compute the second level criterion to prove it. 

Figure 12  Comparison of 1st and 2nd generation 
criteria KGmax curves. 
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3.3 Influence of watertight deck height 

The watertight deck is lowered from 14 to 
9 metres. 

First level.  Lowering the watertight deck 
has normally no influence on the first level 
criterion which considers only metacentric 
height (hence small inclinations). For the first 
method (parallel waterplane at lowest draught), 
this is evident. For the second method (GM 
computation on wave), the wave crest should 
pass over the watertight deck, reducing the 
waterplane and its inertia. This situation does 
not occur with the watertight deck at 9 m (free-
board at full load is 3 m, to be compared with 
wave half-height which is 2.67 m). However, it 
appears at a draught over 6 m if the watertight 
deck is lowered at 8 m (in this case the ship 
does not comply with the current regulation). 
See KGmax curves in Figure 13. 

Figure 13  KGmax curves for 1st level criterion 
(2nd method) for watertight deck at 9 and 8 m. 

The situation for the last point of the curve 
“Watertight deck @ 8 m” in Figure 13 
(d=6.25 m) is shown in Figure 14. The 
waterplane is truncated on a quarter of its 
length. This situation should not occur in 
reality because the wave crest should not flood 
the garage deck even if its volume is 
considered as not watertight. 

Figure 14  Truncated waterplane. 

Recommendation: Regulation should 
specify the watertight volume to use. French 
military regulation (IG6018A) considers two 
different watertight volumes. The “bulkhead 
deck” is its upper limit which is tight to 
prolonged immersion. This watertight volume 
is considered in damage stability. In this 
sample, this deck should be the garage deck at 
8 or 9 m above baseline. The “weather deck” is 
the upper limit which is tight to non-prolonged 
immersion. It may be the bulkhead deck or 
above. The increased watertight volume 
associated with this deck is considered in intact 
stability. In this sample, this deck should be 
located at 14 m above baseline (first passenger 
deck). 

Second level.  KGmax curves associated 
with the second level criterion for the lowered 
watertight volume height are shown in Figure 
15. They are compared to those associated with 
the first level (independent from the watertight 
volume height) and those associated with the 
first generation criteria recalculated for the 
same watertight volume. As before, we observe 
that the pure loss of stability criteria do not 
introduce any additional requirement compared 
to first generation criteria. However, we note 
that the second level criterion is more 
demanding than the first level criterion 
calculated by the second method (GM compu-
tation on wave). This is a paradoxical situation. 

Figure 15  KGmax curves for a watertight 
volume limited at 9 m. 
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Figure 16 compares the KGmax curves 
associated with pure loss of stability criteria 
first and second level computed for both 
watertight decks located at 9 m and 14 m from 
baseline. 

Figure 16  Influence of the watertight volume 
height on pure loss of stability KGmax curves. 

4. CONCLUSION

The 3D hydrostatic volume code imple-
mented in the Calcoque software is fully 
compatible with the first and second level pure 
loss of stability criteria. It can handle the real 
hull of the ship, with its appendages and void 
spaces. Use of this code to compute KGmax
curves of a passenger ship showed: 

New requirements regarding pure loss of
stability criteria are similar to those of the
first generation criteria.
The importance of a rigorous definition of
the watertight volume to be considered
(real or bare hull, upper limit).
A paradoxical situation when the water-
tight deck is lowered (first level requires
more than second level).

The study should be continued with other 
civilian and military ships of different 
geometries and extended to parametric roll, 
whose hydrostatic computations are similar to 
those of pure loss of stability. 
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