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ABSTRACT

The discrete wavelet transform is applied to non-stationary ship motion data. The data was
obtained by on-board measurements that were carried out under relatively severe sea conditions. In
the full scale measurements, the ship travelled on several courses to investigate the change of
frequency response relative to the encounter wave angle. Comparing to the results of Fourier
analysis and time-varying autoregressive coefficient modelling, it is shown that the discrete wavelet
transform can analyse non-stationary ship motions in the frequency and the time domain.
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1. INTRODUCTION

The author has been trying to develop a
guidance system for heavy weather operation
and investigating suitable signal processing
methods under the necessity of analysing non-
stationary stochastic process. Generally, the
assumption of stationary stochastic processes
is applied to the seaway, but not to ship
response because it also depends on ship
manoeuvres. Ship response is strongly
affected by changes in the encounter angle
and frequency of waves. Therefore, the
method is needed to be a real-time algorithm
that can deal with non-stationary stochastic
processes. In the previous study (Iseki &
Terada, 2002, Iseki, 2006), the instantaneous
spectral analysis with the Time-Varying
coefficient Vector Auto Regressive (TVVAR)
model was introduced to deal with non-
stationary ship motions. Some problems,
however, were pointed out because the
maximum likelihood method for
determination of the trade-off parameter,
which is the ratio of the observation noise and
the system noise of Kalman filter, cannot be
applied to the real-time algorithm.
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On the other hand, the Discrete Wavelet
Transform (DWT) is widely used recently in
the field of signal processing (Percival and
Walden 2000), image compression and
analyses of non-stationary time series. In
comparison with the Continuous Wavelet
Trans-form (CWT), the process of DWT can
be recognized as decomposition of a time
series with use of digital filters while the
CWT is defined by a convolution integral
over entire time axis. In this sense, the DWT
is suitable for digital computing and real-time
analyses of non-stationary time series.

The author was also applied the Discrete
Wavelet Packet Transform (DWPT) to non-
stationary ship motion data (Kang and Iseki
2013). Comparing to the results of Discrete
Fourier Transform (DFT) and the TVVAR
modelling, it was confirmed that the locations
of peaks of the DWPT coefficients agree well
with the peak frequencies of the spectra
estimated by DFT. However, the obvious
advantage of DWPT was not observed in
comparison with TVVAR modelling.
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In this paper, both of DWT and DWPT are
applied to analyses of non-stationary ship
motion data which was measured during a large
course alteration. Comparing to the results of
DFT and TVVAR modelling, the validity of
the DWT and DWPT is discussed in detail.

2. DISCRETE WAVELET TRANSFORM

2.1 Basic Properties

The DWT of a measured time series
X:{xn:n=0,1,2,---,N—1} is defined as
follows:

W=wX (1)

where W denotes an N dimensional column
vector of DWT coefficients, w an NXN real-
valued matrix defining the DWT.

For the convenience, we assume that the
sample size N =2" for an integer J, . The
DWT coefficient W and matrix w could be
separated as;

W:[Wlawza"'ijﬂavjh]T @
WZ[WI,WZ,---,WJ“,VJA]T @)

where
“)

W =wX',V =v X'

The W; and V; are the wavelet coefficient
sub-vector and the scaling coefficient sub-
vector for the level ;.

r (5)
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v - , (6)

i =WV ViV
where N, =N/2’ denotes the number of
components  at the level j. Therefore, V,

contains only a scaling coefficient.

The “level ;j” is closely related to the scale
7, =2""(j=1,2;-,J,) which is the sampling
interval of the time series and denotes the
number of times of “down-sampling by two”.
If the actual sampling time is denoted by At
(sec), the physical scale can be expressed by
7,At.

By orthonormality of the DWT, we can
synthesize the vector X from W by,

(7

which is also a definition of Muti-Resolution
Analysis (MRA) of X . Here D, and S, are
called as “details” for level j and “smooth” for
level Jy, respectively. In the actual calculations,
the DWT matrix w is not formed explicitly but
rather W is computed using the “pyramid
algorithm” which is effective and fast from the
viewpoint of the computational process (Mallat

1989).

If we represent the actual wavelet filter by
{h, 1=0,1,2,--, L—l}, we can also derive the
scaling filter by using “quadrature mirror”
relationship,

8 = (‘DM hy )

where L denotes the width of the wavelet filter.

In practice, the wavelet filter {#, } is a high-
pass filter, while the scaling filter {g,} is a
low-pass filter. Assuming V=X with defined
{h,}, {g,}, general jth stage of the pyramid
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algorithm yields the nth components of the
sub-vector W, and V; as follows;

Wj,n = hle—1,2n+1 / 9
=0
-1
V. = V.
= 81V 20411 (10)
(n=0,1, 2,---,Nj—1)

Therefore, the DWT can be recognized as a
decomposition of a time series X into
coefficients that can be associated with
different scales and times.

2.2 DWT spectrum
According to the decomposition described

in the previous section, the power spectrum of
DWT can be defined as follows;

P = ] an
J 1 2 1 2 2
;PW(T,-)=WHWju :N“X” ~X=9x (1)

where o denotes the sample variance.

2.3 Wavelet Filters

The filter {#,,} and {g,,} are the band
pass filters with pass band given by
/A2 < £<1/At2) and 0< f<1/Ar2’"!
(Hz), respectively. Meanwhile, scaling filters
as well as wavelet filters must satisfy the three
basic properties, which are

=2, zg, -1 (13)

L-1

ZglgH—Zn = (14)
=0

Zglgl+2n =0
I—

Additional to the above conditions,
Daubechies (1988) specified vanishing moment
conditions on the wavelet function and led to
obtain the scaling filters which have minimum
delay. In this study Daubechies filter of width 8
is used for the DWT. Actual value and the
shape are expressed on Figure 1 and Table 1.
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Table 1 Daubechies wavelet and scaling
filters of width 8.
[ Wavelet filter (k) | Scaling filter (g;)
0 -0.010597401785 | 0.230377813309
1 -0.032883011667 | 0.714846570553
2 0.030841381836 | 0.630880767930
3 0.187034811719 | -0.027983769417
4 -0.027983769417 | -0.187034811719
5 -0.630880767930 | 0.030841381836
6 0.714846570553 | 0.032883011667
7 -0.230377813309 | -0.010597401785
0.8 y— n
——Scaling filter
32 / \ -I-Wavelit filter / \
0.2 ._.74><\ // \\
S0 1 2 ~3s] ¢ Y
04 Length /
-0.6
0.8
Figure 1  Daubechies wavelet and scaling
filters of width 8.

3. DISCRETE WAVELET PACKET
TRANSFORM

As shown in the previous section, the DWT
decomposes the frequency interval
0< f<1/2At into adjacent individual
intervals. The DWPT can be regarded as one of
the extension of orthonormal transformation
and decomposes the frequency into 2 equal
and individual intervals at the level j. The
actual procedure of the calculation is readily
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expressed using very simple modification of
the pyramid algorithm (Percival and Walden
2000).

Wyo =X ‘
! !
[ ]
12 12
| Wi | Wi, |
l l
[
12 12
WZ,[I WZ,‘[
) 1
(8]
12 12
WSJI] W341
0 1 1 1 1
16 8
f
Figure 2 Flow diagram illustrating the

analysis of X into Wi, W3, Wy and Wy
which is identical to partial DWT of level 3.

| Wos - X |

Figure 3 Flow diagram illustrating the
analysis of X into Wi, W3, ..., W33 using
DWPT of level 3.

Figure 2 shows the flow diagram of the
DWT pyramid algorithm described in the
previous section, where the level Jy=3. The
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starting point is defined as W, =V, =X and
other nodes represent W,, =W, , W,, =W, |
W,, =W, and W, =V,. G, and H; represent
filtering with use of the wavelet filter {/, } and
the scaling filter {g,} at the level j. The ¢ | 2’
denotes the “down-sampling by two”. The
fractions at the lowest level denote the
corresponding frequencies with Ar=1.

By using the low-pass and high-pass filters,
the process of the decomposition of time series
X is simply illustrated in the figure. It should
be noted, however, that the nominal frequency
intervals for these four nodes are not constant.

Figure 3 shows the flow diagram of the
DWPT. It can be seen that the frequency
intervals are constant and the resolution is
improved by the iterative use of the low-pass
and high-pass filters. This is the reason for the
introduction of the DWPT.

4. FULL SCALE EXPERIMENT

The full scale ship experiment was carried
out on January 25th 2012 using the training
ship Shioji-maru of Tokyo University of
Marine Science and Technology. A photo and
principal particulars of the ship are shown in
Figure 4 and Table 2. The location of the
experimental area was off Sunosaki cape in
Chiba Prefecture, Japan.

Figure 4 The training ship Shioji-maru.

Table 2 Principal particulars of the ship.
Length (P.P.) 46.00(m)
Breadth (Mrp) 10.00(m)
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Depth (MLD) 610(1’1’1)
Draught (Mrp) 2.65(m)
Displacement 659.4(t)

Figure 5 shows the trajectory of the T.S.
Shioji-maru during the experiment. The blue
arrow denotes the main direction of waves. In
order to measure changes in ship motions with
respect to the encounter angle of waves, the
angle of CPP was set to 10.5 degrees during 90
minute manoeuvres involving straight sections
and changes in course.
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Figure 5 The experimental area at the south
of Sunosaki cape and the ship trajectory.

Table 3 Ship course and the sea conditions.
Ship | Ship Wind Wind
Run | course | speed | direction | speed
(deg) | (knot) | (deg) m/s)
A 180 8.3 257 10.4
B 0 10.4 260 11.5
C 240 7.3 265 11.5
D 120 99 258 11.8
E 60 10.7 267 11.5
F 0 10.5 267 11.4
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Figure 6 Power spectra of rolling motions.

Table 3 shows the courses and the mean
speed-through-water of the ship, and true wind
directions and the speeds are also summarized.
During the experiment, observed wind waves
were: height 1.0-1.5m, period 6-7 sec, direction
200-240 degrees, and swells were: height 2-3m,
period 8-10 sec, direction 200 degrees. Note
that the wave conditions listed in Table 3 can
be recognized rather severe, since the ship is
not a large ship (Table 2).

Figure 6 shows power spectra of the rolling
motion calculated by FFT. It should be noted
that the spectra “D” and “E” show the large
difference in spite of adjacent run, because
there is a large course alteration between them.

In this paper, the rolling time series
between “D” and “E” are analysed in order to
concentrate our attention on the non-
stationarity. The trajectory is indicated in
Figure 7 and seems to be a zigzag line because
of beam seas. The analysed time span is 102.4s.
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Figure 7 Time series of rolling motion. The
red arrow denotes the starting side.
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Figure 8 Time series of rolling motion.

Figure 8 shows the time history of the
rolling motion that was analysed. The sampling

time 1s 0.1s and 1024 observations are included.

It can be seen that the ship was experienced
rather large amplitude rolling during the beam
seas condition (40 to 70 sec).

Figure 9 shows the power spectrum
analysed by DFT ignoring the fact that the data
is non-stationary. The peak frequency is
0.152Hz and coincides with the rolling natural
frequency of the ship.
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Figure 9 Power spectrum of rolling motion.

5. TVVAR MODEL ANALYSIS

TVVAR modelling was originally applied
to analysis of the earthquake data (Kitagawa &
Gersch, 1985, Jiang & Kitagawa, 1993).
Generally, TVVAR models are transformed
into state-space models, and the time varying
coefficients can be evaluated by using the
Kalman filter algorithm. Using the estimated
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time varying coefficients, the instantaneous
power spectra of ship motions can be estimated
at every moment.

Figure 10 shows the time evolution of the
estimated auto spectra of roll angle from Os to
100s. In this figure, the curves denote
estimated instantaneous auto spectra and are
superimposed on time axis with time increasing.
In this estimation, the model order was set to 9.
Comparing with the ship trajectory illustrated
in Figure 8, it is found that the rolling motion
becomes larger during the beam seas and the
peak frequency coincides well with figure 9.
On the other hand, it can be seen the
“development period” at the beginning of
analysis (from Os to 30s). This comes from the
initial conditions of the Kalman filter and
means that the TVVAR modelling analysis
requires a certain length of time series. In
addition to this, some problems were pointed
out in the TVVAR modelling. The maximum
likelihood method for determination of the
trade-off parameter, which is the ratio of the
observation noise and the system noise of
Kalman filter, cannot be applied to the real-
time algorithm.
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Figure 10  Instantaneous auto spectrum of
rolling motions estimated by TVVAR
modelling.
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Figure 11 Results of multi-resolution analysis
of rolling motion time series.

Figure 12 shows the time evolution of the
estimated DWT spectrum from Os to 100s. The
DWT spectrum is expressed by discrete value,
therefore, the graph is indicated in a stepwise
shape. In this figure, levels of the DWT can be
seen from 4 to 10 because frequencies of the
smaller level are higher than 0.5Hz. The wide
band on the centre (around 0.25Hz) denotes the
power of D5 and the neighbouring left band
denotes the power of D6. Similar to Figure 11,
it can be observed that D6 is less advanced in
development and has long duration, comparing
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with D5. This conclude that the DWT analysis
is very useful for frequency/time analysis.
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Figure 12 Results of DWT analysis of rolling
motion.
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Figure 13 Results of DWPT analysis of level
7 of rolling motion.

Figure 13 shows the time evolution of the
estimated DWPT spectrum of level 7. As
described in the section 3, the frequency
intervals are unified and the resolution is
improved than DWT analysis. The peaks of the
spectra were sharpened in the frequency-wise.
Furthermore, the shape of spectra agree well
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with the results of DFT and TVVAR modelling.

However, it can be also seen that the resolution
in time is worsened in comparison with Figure
12. Therefore, selection of the suitable level is

very important for the effective DWPT analysis.

7. CONCULSIONS

The DWT and DWPT were applied to non-
stationary ship motion data. Comparing to the
spectra of DFT and the TVVAR modelling, the
results obtained in this report can be
summarized below:

(1) The MRA can be applied to analyses of
non-stationary time series. It is very useful to
extract the motion that has a certain frequency
band.

(2) The locations of peaks of DWT spectra
represent the time evolution of the rolling
motion and agree well with the peaks of the
spectra estimated by TVVAR modelling.

(3) Selecting a suitable level, the spectra
estimated by the DWPT analysis agree well

with the results of DFT and TVVAR modelling.

This concludes that the DWT and DWPT
are powerful tools for analysing non-stationary
ship motion data.
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